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Abstract
Lie group theory was originally created more than 100 years ago as a tool for
solving ordinary and partial differential equations. In this article we review the
results of a much more recent program: the use of Lie groups to study difference
equations. We show that the mismatch between continuous symmetries and
discrete equations can be resolved in at least two manners. One is to use
generalized symmetries acting on solutions of difference equations, but leaving
the lattice invariant. The other is to restrict them to point symmetries, but to
allow them to also transform the lattice.
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1. Introduction

The symmetry theory of differential equations is well understood. It goes back to the
classical work of Sophus Lie and is reviewed in numerous modern books and articles
[12, 16, 20, 22, 37, 48, 69, 87, 112, 118, 122–125, 133, 211, 218, 230, 247–249, 262].
As a matter of fact, Lie group theory is now a very general and useful tool for obtaining exact
analytic solutions of large classes of differential equations, specially nonlinear ones.

The application of Lie group theory to discrete equations is much more recent and a
vigorous development of the theory only started in the 1990s [10, 15, 32, 33, 41, 51, 59–61,
63–68, 75, 76, 92, 98, 101–107, 119, 120, 126, 129, 131, 135–137, 140–142, 144–147,
151–162, 165–178, 183–188, 193, 206, 221–223, 229, 231, 235–238, 240, 246, 257, 260,
263–267].

The purpose of this article is to provide a review of the progress made.
In this whole field of research one uses group theory to do for difference equations what

has been done for differential ones. This includes generating new solutions from old ones,
identifying equations that can be transformed into each other, performing symmetry reduction
and identifying integrable equations.

When adapting the group theoretical approach from differential equations to difference
ones, we must answer three basic questions:

1. What do we mean by symmetries?
2. How do we find the symmetries of a difference system?
3. What do we do with the symmetries once we know them?

1.1. Lie groups and differential equations

Let us first briefly review the situation for differential equations.
Let us consider a general system of differential equations

Ea(x, u, ux, u2x, . . . , unx) = 0, x ∈ R
p, u ∈ R

q, a = 1, . . . , N, (1.1)

where unx denotes all (partial) derivatives of u of order n. The numbers p, q, n and N are all
nonnegative integers.

We are interested in the symmetry group G of system (1.1), i.e. in the local Lie group
of local point transformations taking solutions of equation (1.1) into solutions of the same
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equation. Point transformations in the space X × U of independent and dependent variables
have the form

x̃ = �λ(x, u), ũ = �λ(x, u), (1.2)

where λ denotes the group parameters. Thus

�0(x, u) = x, �0(x, u) = u,

and the inverse transformation (x̃, ũ) �→ (x, u) exists, at least locally.
The transformations (1.2) of local coordinates in X×U also determine the transformations

of functions u = f (x) and of derivatives of functions. A groupG of local point transformations
of X × U will be a symmetry group of system (1.1) if the fact that u(x) is a solution implies
that ũ(x̃) is also a solution.

How does one find the symmetry groupG? Instead of looking for ‘global’ transformations
as in equation (1.2) one looks for infinitesimal ones, i.e. one looks for the Lie algebra g that
corresponds to G. A one-parameter group of infinitesimal point transformations will have the
form

x̃i = xi + λξi(x, u), ũα = uα + λφα(x, u),

|λ| � 1 1 � i � p, 1 � α � q.
(1.3)

The search for the symmetry algebra g of a system of differential equations is best
formulated in terms of vector fields acting on the space X × U of independent and dependent
variables. Indeed, consider the vector field

X̂ =
p∑

i=1

ξi(x, u)∂xi
+

q∑
α=1

φα(x, u)∂uα
, (1.4)

where the coefficients ξi and φα are the same as in equation (1.3). If these functions are known,
the vector field (1.4) can be integrated to obtain the finite transformations (1.2). Indeed, all
we have to do is to integrate the equations

dx̃i

dλ
= ξi(x̃, ũ),

dũα

dλ
= φα(x̃, ũ), (1.5)

subject to the initial conditions

x̃i |λ=0 = xi ũα|λ=0 = uα. (1.6)

This provides us with a one-parameter group of local Lie point transformations of the form
(1.2) where λ is the group parameter.

The vector field (1.4) tells us how the variables x and u transform. We also need to know
how derivatives such as ux, uxx, . . . transform. This is given by the prolongation of the vector
field X̂.

We have

pr X̂ = X̂ +
∑

α

{∑
i

φxi

α ∂uα,xi
+
∑
i,k

φxixk

α ∂uα,xi xk
+

xixkxl∑
i,k,l

φxixkxl

α ∂uα,xi xkxl
+ · · ·

}
, (1.7)

where the coefficients in the prolongation can be calculated recursively, using the total
derivative operator,

Dxi
= ∂xi

+ uα,xi
∂uα

+ uα,xaxi
∂uα,xa

+ uα,xaxbxi
∂uα,xaxb

+ · · · (1.8)

(a summation over repeated indices is to be understood). The recursive formulae are

φxi

α = Dxi
φα − (Dxi

ξa)uα,xa
, φxixk

α = Dxk
φxi

α − (Dxk
ξa)uα,xixa

,

φxixkxl

α = Dxl
φxixk

α − (Dxl
ξa)uα,xixkxa

,
(1.9)

etc.
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The invariance condition for system (1.1) is expressed in terms of the operator (1.7) as

pr(n)X̂Ea|E1=···=EN=0 = 0, a = 1, . . . , N, (1.10)

where pr(n)X̂ is the prolongation (1.7) calculated up to order n (where n is the order of system
(1.1)).

Equation (1.10) provides a system of linear partial differential equations for the
functions ξi(x, u) and φα(x, u), in which the variables x and u figure as independent
variables. By definition of point transformations the coefficients ξi and φα depend
only on (x1, . . . , xp, u1, . . . , uq), not on any derivative of uα . The action of pr(n)X̂ in
equation (1.10) will, on the other hand, introduce terms in (1.10), involving the derivatives

∂ku

∂x
k1
1 ...∂x

kp
p

, k = k1 + · · · + kp, 1 � k � n. We use equations (1.1) to eliminate N (the number of

equations) such derivatives. We then collect all linearly independent remaining expressions
in the derivatives and set the coefficients of these expressions equal to zero. This provides the
‘determining equations’: a set of linear partial differential equations for the functions ξi(x, u)

and φα(x, u). The order of the system of determining equations is the same as the order of
the studied system (1.1); however, the determining system is linear, even if the system (1.1) is
nonlinear. It is usually overdetermined and not difficult to solve. Computer programs using
various symbolic languages exist that derive the determining system and solve it, or at least
partially solve it [16, 42, 100, 243, 247].

The solution of the determining system may be trivial, i.e. ξi = 0, φα = 0. Then the
symmetry approach is of no avail. Alternatively, the general solution may depend on a finite
number K of integration constants. The Lie algebra of the symmetry group, the ‘symmetry
algebra’, for short, is then K-dimensional and must be identified as an abstract Lie algebra
[99, 128, 198, 227]. Finally, the general solution of the determining equations may involve
arbitrary functions and the symmetry algebra is infinite-dimensional. For instance, for a linear
PDE the linear superposition principle is reflected by the presence in the Lie algebra of an
operator depending on the general solution of the studied equation. In turn, this general
solution depends on arbitrary functions, e.g. the Cauchy data.

So far we have considered only point transformations, as in equation (1.2), in which the
new variables x̃ and ũ depend only on the old ones, x and u. More general transformations are
‘contact transformations’, where x̃ and ũ also depend on first derivatives of u [13, 22, 118, 122,
211, 249]. A still more general class of transformations are generalized transformations, also
called ‘Lie-Bäcklund’ transformations [13, 132, 211]. In principle these involve derivatives
of arbitrary orders.

When studying generalized symmetries, and sometimes also point symmetries, it is
convenient to use a different formalism, namely that of evolutionary vector fields. Let us
first consider the case of Lie point symmetries, i.e. vector fields of the form (1.4) and their
prolongations (1.7). With each vector field (1.4) we can associate its evolutionary counterpart
X̂e, defined as

X̂e = Qα(x, u, ux)∂uα
, Qα = φα − ξjuα,xj

. (1.11)

The prolongation of the evolutionary vector field (1.11) is defined as

pr X̂e = Qα∂ua
+ Q

xj

α ∂uα,xj
+ Q

xj xk

α ∂uα,xj xk
+ · · ·

Q
xj

α = Dxj
Qα, Q

xj xk

α = Dxj
Dxk

Qα, . . . .
(1.12)

The functions Qα are called the characteristics of the vector field. Observe that X̂e and
prX̂e do not act on the independent variables xj . For Lie point symmetries evolutionary and
ordinary vector fields are entirely equivalent and it is easy to pass from one to the other.
Indeed, equation (1.11) gives the connection between the two. The symmetry algorithms for
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calculating the symmetry algebra g in terms of ordinary, or evolutionary vector fields, are also
equivalent. Equation (1.10) is simply replaced by

pr(n)X̂eEa|E1=···=EN =0 = 0, a = 1, . . . , N. (1.13)

The reason that equations (1.10) and (1.13) are equivalent is the following:

pr(n)X̂e = pr(n)X − ξiDi. (1.14)

The total derivative Di acts like a generalized symmetry of equation (1.1), i.e.,

DiEa|E1=E2=···=EN =0 = 0 i = 1, . . . , p, a = 1, . . . , N. (1.15)

Equations (1.14) and (1.15) prove that systems (1.10) and (1.13) are equivalent.
Equation (1.15) itself follows from the fact that DiEa = 0 is a differential consequence
of equation (1.1); hence, every solution of equation (1.1) is also a solution of equation (1.15)
(i.e. the action of Di on solutions is trivial).

To find generalized symmetries of order k, we use equation (1.11) but allow the
characteristics Qα to depend on all derivatives of u up to order k. The prolongation is
calculated using equation (1.12). The symmetry algorithm is again equation (1.13).

A very useful property of evolutionary symmetries is that the functions Qα provide
compatible flows. This means that the system of equations

∂uα

∂λ
= Qα (1.16)

is compatible with system (1.1) when uα = uα(x, λ). In particular, group-invariant solutions,
i.e., solutions invariant under a subgroup of G, are obtained as fixed points

Qα = 0. (1.17)

If Qα is the characteristic of a point transformation, then (1.17) is a system of quasilinear first-
order partial differential equations. They can be solved and their solutions can be substituted
into (1.1), yielding the invariant solutions explicitly. We mention that there is no guarantee
that equation (1.16) or even (1.17) will have physically meaningful solutions.

Many different extensions of Lie’s original method of group invariant solutions exist.
Among them we mention, first of all, conditional symmetries [21, 80, 81, 164]. For differential
equations, they were introduced under several different names [21, 50, 164, 215] in order to
obtain dimensional reductions of partial differential equations, beyond those obtained by using
ordinary Lie symmetries.

Another valuable extension is the concept of partial symmetries. They correspond to
the existence of a subset of solutions which, without necessarily being invariant, are mapped
into each other by the transformation [47, 49]. Further extensions are given by asymptotic
symmetries [88, 90], when extra symmetries are obtained in the asymptotic regime, or
approximate symmetries [14, 82, 125] where one considers the symmetries of approximate
solutions of a system depending on a small parameter.

1.2. Lie groups and difference schemes

Let us now return to the problem at hand, namely symmetries of difference systems. We wish
to study the continuous symmetries and use Lie algebra techniques. However, the equations are
now discrete, i.e. they involve functions u(x) that are themselves continuous, but evaluated, or
sampled, at discrete points. Several different approaches to this problem have been developed
and will be discussed below.

In any approach we must take into account that we are dealing with two objects. One
is the difference equation itself. Since u(x) is not necessarily a scalar, this may actually
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be a system of equations. For simplicity, unless otherwise stated, we will restrict to scalar
equations. The other object is the lattice, which may be a priori given and not subject to
group transformations. Alternatively, the considered Lie group G may act on solutions and
on the lattices. In order to allow a unified treatment of different approaches, we shall give the
difference scheme by a system of equations, involving the variables x evaluated at K different
points, with 2 � K < ∞. The equations will have the form

Ea

({xk}n+N
k=n+M, {uk}n+N

k=n+M

) = 0, a = 1, . . . , nE x ∈ R
p, u ∈ R

K = N − M + 1, n,M,N ∈ Z, N > M, uk ≡ u(xk).
(1.18)

The number of points involved is not necessarily the same in all equations.
Let us first discuss the case of an ordinary difference scheme (O�S), when we have

just one independent variable x and one dependent scalar, u(x). In this case the number of
equations nE in (1.18) must be nE = 2 and these two equations must satisfy the independence
conditions

∂(E1, E2)

∂(xn+N, un+N)
�= 0,

∂(E1, E2)

∂(xn+M, un+M)
�= 0. (1.19)

These nondegeneracy conditions make it possible to calculate (xn+N, un+N), or (xn+M, un+M),
respectively, if all the other points are given. In the continuous limit the spacings between
any two neighbouring points go to zero. One of the equations (1.18) reduces to an ordinary
differential equation (ODE) of order K ′ � K − 1 (e.g. for K = 3 we obtain a second-, or
first-order ODE). The other equation, or some combination of the two equations (1.18) in the
continuum limit reduces to an identity (like 0 = 0).

Thus, an O�S corresponds to two relations between K points xk on a line and the values
uk = u(xk) at these points. The points are not necessarily equally spaced. The symmetry
group G of the system (1.18) will act by point transformations, as in equation (1.2). The
prolonged action will act on all points of the lattice, in particular on all points figuring in
equation (1.18). The Lie algebra g that corresponds to the group G is realized by vector fields
of the form (1.4), just as in the case of differential equations, and equation (1.5) also holds.
The prolongation of the vector field (1.7) is different. For the O�S (1.18) the prolongation is

pr X̂ =
n+N∑

k=n+M

ξ(xk, uk)∂xk
+

n+N∑
k=n+M

φ(xk, uk)∂uk
. (1.20)

i.e. we sum over all points of the lattice that figure in equation (1.18).
As an example of an O�S consider a three-point scheme approximating a second-order

ODE on a uniform lattice. We put

E1 = un+1 − 2un + un−1

(xn+1 − xn)2
− u2

n = 0; E2 = xn+1 − 2xn + xn−1 = 0. (1.21)

The continuous limit is

E1 = 0 → uxx − u2 = 0, E2 = 0 → 0 = 0. (1.22)

The case of partial difference equations (P�S) is similar, but somewhat more complicated.
Let us restrict to the simplest nontrivial case, namely one scalar function of two independent
variables u(x, t). The lattice is a distribution of points in a plane and we will call these points
Pm,n and their coordinates (xm,n, tm,n). Here x and t are Cartesian coordinates, or some other
coordinates of the points Pm,n. The integers m, n label points of the lattice. A solution of
the difference system will provide us with expressions for x, t and u as functions of m, n and
some arbitrary functions of one discrete variable (either m, n or some function of m and n).
An example is given below in equation (1.24). In order to allow the group transformations to
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�

�t

Pm+1,n 1

Pm,n − 1

Pm− 1,n −1

Pm+1,n

Pm,n

Pm − 1,n

Pm+1,n+1

Pm,n+1

Pm− 1,n+1

n−1 n n+1m−1

m

m+1

−

x

Figure 1. Example of a two-dimensional lattice obtained as a solution of the system (1.18).

act on the lattices we again describe the P�S by the relation (1.18). The minimal number of
equations nE is 3, and we then have three coupled functional equations for three continuous
functions x, t and u of two discrete labels m and n (see figure 1). The solution of the system
will depend on a certain number of arbitrary functions of one variable. The actual number
of these functions depends on the number of points used in the scheme. These functions can
then be determined from a combination of initial and boundary conditions, just as in the case
of partial differential equations.

As an example of a system of equations (1.18) with nE = 3, consider a discretization of
the PDE uxt = 0, namely

E1 = 1

tm+1,n − tm,n

{
um+1,n+1 − um+1,n

xm+1,n+1 − xm+1,n

− um,n+1 − um,n

xm,n+1 − xm,n

}
= 0

E2 = tm,n+1 − tm,n = 0, E3 = xm+1,n − xm,n = 0,

(1.23)

where um,n = u(xm,n, tm,n). The general solution of this system involves four arbitrary
functions of one variable, namely

tm,n = α(m), xm,n = β(n), um,n = f (xm,n) + g(tm,n). (1.24)

An alternative approach to symmetries of P�S [160] is to choose nE = 5 in the system
(1.18) (for three variables x, t and u). The system is then overdetermined and certain
compatibility conditions must be satisfied. The additional equations will further specify
the lattice and remove some, or all of the arbitrary functions obtained when imposing only
three equations (nE = 3). When we impose nE > 3 equations (1.18) on x, t, u, then nE − 3
of them will play the role of initial, or boundary conditions for the first three equations.

In the case of two independent variables x and t and one dependent one u we can write
the symmetry vector field X̂m,n as

X̂m,n = ξn,m(xn,m, tn,m, un,m)∂xn,m
+ τn,m(xn,m, tn,m, un,m)∂tn,m

+ φn,m(xn,m, tn,m, un,m)∂un,m
,

(1.25)

and its prolongation as

pr X̂ =
∑
k,l

X̂m+k,n+l (1.26)

where the summation is over all points figuring in the system (1.18).
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The invariance condition for the system (1.18) is the same as in the continuous case,
namely (1.10).

More generally, for a system with k independent variables −→x we introduce a fixed
coordinate frame. Each point of the lattice will be labelled by k integers, e.g. Pn1,n2,...,nk

and
correspondingly will have coordinates −→x n1,...,nk

. At least k + 1 equations (1.18) are needed to
define a scalar equation and the lattice.

The formalism is somewhat heavy but allows us to consider quite general point
transformations. The actual lattice emerges, together with the function u(−→x ), as a solution
of the system (1.18). A standard, equally spaced orthogonal (Cartesian) lattice is the special
case in which the equations E2, . . . , Ek in (1.18) are ‘one point’ equations xi = ni . In this
special case no continuous transformation of the independent variables is allowed.

The reason for introducing this general formalism is precisely to be able to consider
continuous symmetries such as rotations, Lorentz transformations, Galilei transformations,
etc as point symmetries for systems on the lattices.

It is to be stressed that in this approach the lattice is obtained as a part of the solution of
the difference system. Lie point transformations will in general transform a solution given on
one lattice into a solution on a different lattice.

1.3. Outline of the review

In section 2 we discuss point symmetries of difference equations defined on fixed,
nontransforming lattices [33, 92, 98, 119, 120, 135–137, 140, 165, 168, 173, 184–
187, 193, 222, 223, 236, 238]. The symmetry transformations are assumed to have the
form (1.2). They must take solutions into solutions and the lattice into itself. This approach
is fruitful mainly for differential–difference equations (D�E’s), where not only the dependent
variables, but also some of the independent ones are continuous.

Section 3 is devoted to generalized point symmetries on fixed lattices [75, 76, 105, 145–
147, 156, 157, 162]. The concept of symmetry is generalized in that transformations act
simultaneously at several points of the lattice, possibly infinitely many ones. In the continuous
limit they reduce to point transformations. This approach is fruitful mainly for linear equations,
or equations that can be linearized by a transformation of variables.

In section 4 we consider generalized symmetries on fixed lattices [101–103, 107, 144,
245, 246]. This approach is fruitful for discrete nonlinear integrable equations, i.e., nonlinear
difference equations possessing a Lax pair. The symmetries are generalized ones, treated
in the evolutionary formalism. In a continuous limit they reduce to point and generalized
symmetries of integrable differential equations.

Point symmetries transforming solutions and lattices [15, 32, 59–68, 158–160, 174] are
considered in section 5. The transformations have the form (1.2) and they act on solutions and
on lattices simultaneously. The lattices themselves are given by difference equations and their
form is dictated by the symmetries. Their main application is to discretize given differential
equations while preserving their symmetries.

A brief conclusion with an overview of the results presented and pending issues is given
in section 6.

2. Point symmetries of difference equations defined on fixed, nontransforming lattices

The essentially continuous techniques for finding Lie symmetries for differential equations
can be extended in a natural way to the discrete case by acting just on the continuous variables
[165, 168, 184–188, 222, 223], leaving the lattice invariant. Transformations of the lattice are
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considered only at the level of the group which itself is finite or discrete. Depending on the
discrete equation we are considering we can have translations on the lattice by multiples of
the lattice spacing and rotations through fixed angles, if the lattice transforms into itself under
such rotation.

In section 2.1 we consider, as an example, the Lie point symmetries of the discrete
time Toda lattice [144]. In section 2.2, we review the steps necessary to obtain continuous
symmetries for differential–difference equations (D�E’s) and then in section 2.3 we carry out
the explicit calculations in the case of the Toda equation in 1+1 dimensions. In doing so we
will present and compare the results contained in our articles on the subject, which correspond
to both the intrinsic method and the differential equation method proposed earlier [166–169],
and those of the global method introduced by Quispel et al [222].

Apart from the standard Toda lattice we will consider a Toda lattice equation with variable
coefficients and will show how, by analysing its symmetry group, one can find the Lie point
transformation which maps it into the standard Toda lattice equation with constant coefficients.
In section 2.4, we will present some results on the classification of nonlinear D�E’s with
nearest-neighbour interactions. Finally, symmetries of a two-dimensional Toda lattice are
discussed in section 2.5.

2.1. Lie point symmetries of the discrete time Toda equation

The discrete time Toda equation [114] is one of the integrable completely discrete partial
differential equations (�� E) [9, 109, 113, 115–117, 148, 203, 204, 207, 216, 239, 241, 242,
250] and is given by

�Toda = eun,m−un,m+1 − eun,m+1−un,m+2 − α2(eun−1,m+2−un,m+1 − eun,m+1−un+1,m ) = 0. (2.1)

Defining
t = mσt, vn(t) = un,m, α = σt (2.2)

we find that equation (2.1) reduces to the continuous-time Toda equation:

�
(2)
Toda = vn,tt − evn−1−vn + evn−vn+1 = 0, (2.3)

when σt → 0 and m → ∞ in such a way that t remains finite. The Toda equation (2.3)
is probably the best known and most studied differential–difference equation [253, 254]. It
plays, in the case of lattice equations, the same role as the Korteweg–de Vries equation for
partial differential equations. It was obtained by Toda [252] in order to explain the Fermi,
Pasta and Ulam results [77] on the numerical experiments on the equipartition of energy in
a nonlinear lattice of interacting oscillators. As shown below in section 4.2.2 equation (2.3)
reduces, in the continuum limit, to the potential Korteweg–de Vries equation. It can be
encountered in many applications from solid state physics to DNA biology, from molecular
chain dynamics to chemistry [36, 228, 253].

Equation (2.1) can be obtained as the compatibility condition of the following over-
determined pair of linear difference equations:

ψn−1,m +

(
α +

1

α
− αeun−1,m+1−un,m − eun,m−un,n+1

α

)
ψn,m + eun,m−un+1,mψn+1,m = λψn,m (2.4)

ψn,m+1 = ψn,m − α eun,m+1−un+1,mψn+1,m. (2.5)

Let us now determine the Lie point symmetries of the discrete time Toda lattice (2.1). We
shall use the notation introduced in section 1.2. The difference scheme (1.18) in this case
reduces to (2.1) and

xn,m = nσx, tn,m = mσt . (2.6)

Equations (2.6) from now on will be denoted as �Lattice = 0.
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A Lie point symmetry is defined by giving its infinitesimal generators, i.e. by the vector
field (1.25). The invariance condition (1.10) then reads:

pr X̂�Toda|(�Toda=0,�Lattice=0) = 0, pr X̂�Lattice|(�Toda=0,�Lattice=0) = 0 (2.7)

The action of (1.26) on the lattice equation (2.6) gives ξn,m = 0, τn,m = 0 and thus the
variables x and t are invariant. When we act with (1.26) on the Toda equation, we get

eun,m−un,m+1 [φn,m − φn,m+1] − eun,m+1−un,m+2 [φn,m+1 − φn,m+2]

−α2{eun−1,m+2−un,m+1 [φn−1,m+2 − φn,m+1]

− eun,m+1−un+1,m [φn,m+1 − φn+1,m]}|�Toda=0 = 0 (2.8)

i.e. a functional equation for the function φn,m. Taking into account the functional constraint
provided by the discrete Toda lattice equation (2.1), the independent variables appearing in
equation (2.8) are: un,m, un,m+1, un,m+2 and un+1,m. To solve equation (2.8) we differentiate it
successively with respect to its independent variables up to the moment when we have an ODE.
If we differentiate equation (2.8) twice with respect to un,m+2 we get that φn,m = c1eun,m + c2,
where c1 and c2 are two integration constants (that can depend on xn,m and tn,m). Introducing
this result into equation (2.8) we get that c1 must be equal to zero. Taking into account that,
due to the form of the lattice, all points are independent we get that c2 must be just a constant.

To sum up, the discrete time Toda equation (2.1) considered on a fixed lattice has only a
one-dimensional continuous symmetry group. It consists of the translation of the dependent
variable u, i.e. ũn,m =un,m + λ with λ constant. This symmetry is obvious from the beginning as
equation (2.1) does not involve un,m itself but only differences between values of u at different
points of the lattice. Other transformations that leave the lattice and solutions invariant will
be discrete [155]. In this case they are simply translations of x and t by integer multiples of
the lattice spacing σx and σt .

More general symmetries are obtained if we relax the lattice conditions. Equation (2.6)
can be viewed as solutions of the lattice equations

xn+1,m − xn,m = σx, tn+1,m − tn,m = 0,

xn,m+1 − xn,m = 0, tn,m+1 − tn,m = σt ,
(2.9)

satisfying the boundary-initial conditions

x0,0 = 0, t0,0 = 0. (2.10)

If we drop the conditions (2.10) the solution of (2.9) is

xn,m = σxn + x0, tn,m = σtm + t0, (2.11)

where x0 and t0 are integration constants (as well as initial x and t values). Acting with the
prolongation (1.26) on (2.9), instead of (2.6) we obtain a more general result. Namely, the
discrete time Toda lattice system (2.1), (2.9) is invariant under continuous translations of x
and t, in addition to those of u:

X̂1 = ∂u, X̂2 = ∂x, X̂3 = ∂t .

The same conclusion holds in the general case of difference equations on fixed lattices. Lie
algebra techniques will provide transformations of the continuous dependent variables only,
though the transformations can depend on the discrete independent variables.

In section 4, we will see that the situation is completely different when generalized
symmetries are considered. In section 5 we will consider transforming lattices, which greatly
increases the role of point symmetries.
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2.2. Lie point symmetries of differential–difference equations

Let us now consider the case of differential–difference equations (D�E). For notational
simplicity, let us restrict ourselves to scalar D�E for one real function u(n, t) depending on
one lattice variable n and one continuous real variable, t. Moreover, we will only be interested
in D�E containing up to second-order derivatives, as those are the ones of particular interest
in applications to dynamical systems. We write such equations as:

�(2)
n ≡ �

(
t, n, un+k|b0

k=a0
, un+k,t |b1

k=a1
, un+k,tt |b2

k=a2

) = 0 aj � bj ∈ Z, (2.12)

with un ≡ un(t).
The lattice is assumed to be uniform, time independent and fixed, the continuous variable

t is the same at all points of the lattice. Thus to equation (2.12) we add

xn = n, tn = tn+1 = t, (2.13)

to obtain the corresponding system (1.18). Examples of such equations which will be
considered in the following are the Toda lattice equation (2.3) and the inhomogeneous Toda
lattice [150]

�̃(2)
n = w,tt (n) − 1

2
w,t +

1

4
− n

2
+

[
1

4
(n − 1)2 + 1

]
ew(n−1)−w(n)

−
[

1

4
n2 + 1

]
ew(n)−w(n+1) = 0. (2.14)

We are interested in Lie point transformations which leave the solution set of
equations (2.12) and (2.13) invariant. They have the form:

t̃ = �g(t, n, un(t)), ũñ(t̃) = �g(t, n, un(t)), ñ = n (2.15)

where g represents a set of continuous or discrete group parameters.
Continuous transformations of the form (2.15) are generated by a Lie algebra of vector

fields of the form:

X̂ = τn(t, un(t))∂t + φn(t, un(t))∂un
(2.16)

where n is treated as a discrete variable and we have set ñ = n, when considering continuous
transformations.

Invariance of the condition (2.13) implies that τ does not depend on n.
As in the case of purely differential equations, the following invariance condition

pr(2)X̂�(2)
n

∣∣
�

(2)
n =0 = 0 (2.17)

must be true if X̂ is to belong to the Lie symmetry algebra of �(2)
n . The symbol pr(2)X̂ denotes

the second prolongation of the vector field X̂, i.e.

pr(2)X̂ = τ(t, un)∂t +
n+b∑

k=n−a

φk(t, uk)∂uk
+

n+b1∑
k=n−a1

φt
k(t, uk, uk,t )∂uk,t

+
n+b2∑

k=n−a2

φtt
k (t, uk, uk,t , uk,tt )∂uk,tt

(2.18)

with

φt
k(t, uk, uk,t ) = Dtφk(t, uk) − [Dtτ(t, uk)]uk,t (2.19)

φtt
k (t, uk, uk,t , uk,tt ) = Dtφ

t
k(t, uk, uk,t ) − [Dtτ(t, uk)]uk,tt (2.20)

where Dt is the total derivative with respect to t.
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Let us note moreover that φt
k and φtt

k are the prolongation coefficients with respect to the
continuous variable. The prolongation with respect to the discrete variable is reflected in the
summation over k.

Equation (2.17) is to be viewed as just one equation with n as a discrete variable; thus
we have a finite algorithm for obtaining the determining equations, a usually overdetermined
system of linear partial differential equations for τ(t, un) and φn(t, un).

A different approach consists of considering equation (2.12) as a system of coupled
differential equations for the functions un(t). Thus, in general we have infinitely many
equations for infinitely many functions. In this case the Ansatz for the vector field X̂ would
be:

X̂ = τ(t, {uj (t)}j )∂t +
∑

k

φk(t, {uj (t)}j )∂uk(t) (2.21)

where by {uj (t)}j we mean the set of all uj (t) and j and k vary a priori over an infinite
range. Calculating the second prolongation pr(2)X̂ in a standard manner (see equations (1.7)
and (1.9)) and imposing

pr(2)X̂�(2)
n

∣∣
�

(2)
j =0 = 0 ∀n, j (2.22)

we obtain, in general, an infinite system of determining equations for an infinite number of
functions. Conceptually speaking, this second method, called the differential equation method
in [168], may give rise to a larger symmetry group than the intrinsic method we introduced
before. In fact the intrinsic method yields purely point transformations, while the differential
equation method can yield generalized symmetries with respect to the differences (but not the
derivatives). In practice, it turns out that usually no higher order symmetries with respect to
the discrete variable exist; then the two methods give the same result and the intrinsic method
is simpler.

A third approach [222, 223] consists of interpreting the variable n as a continuous
variable and consequently the D�E as a differential-delay equation. In such an approach
un+k(t) ≡ exp

[
k∂
∂n

]{un(t)} and consequently the D�E is interpreted as a partial differential
equation of infinite order. In such a case formula (2.17) is meaningless as we are not able
to construct the infinite order prolongation of a vector field X̂. The Lie symmetries are
obtained by requiring that the solution set of the equation �(2)

n = 0 (2.3) be invariant under
the infinitesimal transformation

t̃ = t + ετ(n, t, un(t)), ñ = n + εν(n, t, un(t)), ũñ(t̃) = un(t) + εφ(n, t, un(t)).

(2.23)

To obtain conditional symmetries for difference equations we add to equation (2.12) a
constraining equation which we choose in such a way that it is automatically annihilated
on its solution set by the prolongation of the vector field. Such an equation is the invariant
surface condition

�(1)
n = φn(t, un(t)) − τ(t, un(t))un,t (t) = 0. (2.24)

In general equations (2.12) and (2.24) may not be compatible; if they are, then equation (2.24)
provides a reduction of the number of the independent variables by one. This is the essence
of the symmetry reduction by conditional symmetries. Due to the fact that equation (2.24) is
written in terms of τ and φn, which are the coefficients of the vector field X̂, the determining
equations are nonlinear. The obtained vector fields do not form an algebra, nor even a vector
space, since each vector field is adapted to a different condition [21, 50, 80, 164].



Topical Review R13

2.3. Symmetries of the Toda lattice

Let us now apply the techniques introduced in section 2.2 to the case of equation (2.3) with
the lattice conditions (2.13). In this case equation (2.17) reduces to an overdetermined system
of determining equations obtained by equating to zero the coefficients of [vn,t ]k, k = 0, 1, 2,
3 and of vn±1. They imply:

τ = at + d, φ = b + 2an + ct, a, b, c, d real constants, (2.25)

corresponding to a four-dimensional Lie algebra generated by the vector fields:

D̂ = t∂t + 2n∂vn
, T̂ = ∂t , Ŵ = t∂vn

, Û = ∂vn
. (2.26)

The group transformation which will leave equation (2.3) invariant is hence:

ṽn(t̃) = vn(t̃ e−λ4/2 − λ3) + λ2(t̃ e−λ4/2 − λ3) + λ4n + λ1 (2.27)

where λj , j = 1, 2, 3, 4, are real group parameters.
To the transformation (2.27) we can add some discrete ones [168]:

ñ = n + N N ∈ Z (2.28)

and

(t, vn) → (−t, vn); (t, vn) → (t,−v−n). (2.29)

We write the symmetry group of equation (2.3) as a semidirect product:

G = GD×⊃GC (2.30)

where GD are the discrete transformations (2.28), (2.29) and the invariant subgroup GC

corresponds to the transformation (2.27).
In fact, if we complement the Lie algebra (2.26) by the vector field

Ẑ = ∂

∂n
(2.31)

and require, at the end of the calculations, that the corresponding group parameter be integer,
the commutation relations become:

[Ẑ, D̂] = 2Û ; [D̂, T̂ ] = −T̂ ; [D̂, Ŵ ] = Ŵ ; [T̂ , Ŵ ] = Û . (2.32)

A complete classification of the one-dimensional subgroups ofG can easily be obtained [168].
The one-dimensional subalgebras are [166, 169]

{Ẑ + aD̂ + bÛ }, {Ẑ + aT̂ + kŴ }, {Ẑ + εŴ }, {Ẑ + aÛ},
{T̂ + cŴ }, {D̂ + cÛ}, {Û}, {Ẑ}, {Ŵ },
(a, b, c) ∈ R; a �= 0; k = 0, 1,−1; ε = ±1.

(2.33)

Nontrivial solutions, corresponding to reductions with respect to continuous subgroups
G0 ⊂ GC , are obtained by considering invariance of the Toda lattice under {T̂ + cŴ }, or
{D̂ + cÛ}. They are:

vn(t) = p − 1

2
ct2 −

n∑
j=1

log(q − cj), (2.34)

vn(t) = p + 2(n + c) log(t) −
n∑

j=0

log[q + (2c − 1)j + j 2], (2.35)

where p and q are arbitrary integration parameters.
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Reduction by the purely discrete subgroup,G0 ⊂ GD , given in equation (2.28) implies the
invariance of equation (2.3) under discrete translations of n and makes it possible to impose
the periodicity condition

u(n + N, t) = u(n, t). (2.36)

This reduces the D�E (2.3) to an ordinary differential equation (or a finite system of equations).
For example for N = 2, we get the following reduction of the sinh-Gordon equation

v,tt = −4 sinh v, (2.37)

while for N = 3, we get a reduction of the ordinary Tzitzeica differential equation [258, 259]:

v,tt = e−2v − ev. (2.38)

Let us now consider a subgroup G0 ⊂ G that is not contained in GC , nor in GD , i.e. a
nonsplitting subgroup ofG [219, 220, 262]. A reduction corresponding to Ẑ +aD̂ +bÛ yields
the equation

F ′′(y) = e−b{exp[F(y ea) − F(y) + a] − exp[F(y) − F(y e−a) − a]} (2.39)

where the symmetry variables F(y) and y are defined by:

y = t e−an, vn(t) = an2 + bn + F(y). (2.40)

Using the subalgebra Ẑ + aT̂ + kŴ we get

F ′′(y) = eF(y+a)−F(y) − eF(y)−F(y−a) − k

a
, (2.41)

where

y = t − an, vn(t) = k

2a
t2 + F(y). (2.42)

Equation (2.39) can be called a ‘differential dilation’ type equation; it involves one
independent variable y, but the function F and its derivatives are evaluated at the point y and
at the dilated points y ea and y e−a . Equation (2.41) is a differential delay equation which has
interesting solutions, such as the soliton and periodic solutions of the Toda lattice (for k = 0).

The other two nonsplitting subgroups give rise to linear delay equations which can be
solved explicitly.

This same calculation can also be carried out for the inhomogeneous Toda lattice (2.14).
The symmetry algebra is

D̃ = 2∂t̃ + 1
2∂wn

, T̃ = e−t̃/2
[
∂t̃ − (

wn − 1
2

)
∂wn

]
W̃ = 2 et̃ /2∂wn

, Ũ = ∂wn
.

(2.43)

These vector fields have the same commutation relations as those of the Toda lattice
(2.3). This is a necessary condition for the existence of a point transformation between the
two equations. In fact by comparing the two sets of vector fields, we get the following
transformation which transforms a solution vn(t) of equation (2.3) into a solution wn(t̃) of
equation (2.14)

t̃ = 2 log

(
t

2

)
,

wn(t̃) = vn(t) − 2

(
n − 1

2

)
log(t) +

n∑
j=0

[
1

4
(j − 1)2 + 1

]
.

(2.44)
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Let us now calculate the conditional symmetries of the Toda lattice. We assume that τ is
not zero. The determining equation reads:

φn,tt + φn,tφn,vn
+ 2φnφn,tvn

+ φn

[
φ2

n,vn
+ φnφn,vnvn)

]
+ [2φn − φn−1 − φn+1] evn−vn+1

+ [φn − φn−1][φn,t − φnφn,vn
] = 0. (2.45)

This implies

φn(t, vn(t)) = α(t) + β(t)n (2.46)

with

β,tt + ββ,t = 0, α,tt + βα,t = 0. (2.47)

Solving equations (2.47) we get

φn(t, vn(t)) =


K0 +

(
2
K1

K3
+ nK3

)
tanh

[
K3

2
(t − t0)

]
, for K3 �= 0

K0t + K1 + 2n

t − t0
, for K3 = 0.

(2.48)

For K3 = 0 we get the results given in equation (2.25). For K3 �= 0 an additional ‘symmetry’
is given by φ = nK3 tanh(K3t/2). This gives a new explicit solution of the Toda lattice:

vn(t) = u0 + 2nK3 log

[
cosh

(
K3

2
t

)]
. (2.49)

2.4. Classification of differential equations on a lattice

Group theoretical methods can also be used to classify equations according to their symmetry
groups. This has been done in the case of partial differential equations [91] showing, for
instance, that in the class of variable coefficient Korteweg–de Vries equations, the Korteweg–
de Vries itself has the largest symmetry group. The same kind of results can also be obtained
in the case of differential–difference equations.

Let us consider a class of equations involving nearest-neighbour interactions [173]

�n = un,tt (t) − Fn(t, un−1(t), un(t), un+1(t)) = 0, (2.50)

where Fn is nonlinear in uk(t) and coupled, i.e. such that Fn,uk
�= 0 for some k �= n.

We consider point symmetries only; the continuous transformations of the form (2.15)
are again generated by a Lie algebra of vector fields of the form (2.16). Taking into account
the form of equation (2.50), we have

X̂ = τ(t)∂t +

[(
1

2
τ,t + an

)
un + bn(t)

]
∂un

(2.51)

with an,t = 0. The determining equations reduce to

1

2
τ,tttun + bn,tt +

(
an − 3

2
τ,t

)
Fn − τFn,t

−
∑

k=0,±1

[(
1

2
τ,t + an+k

)
un+k + bn+k(t)

]
Fn,un+k

= 0. (2.52)

Our aim is to solve equation (2.52) with respect to both the form of the nonlinear equation,
i.e. Fn, and the symmetry vector field X̂, i.e. (τ (t), an, bn(t)). In other words, for every
nonlinear interaction Fn we wish to find the corresponding maximal symmetry group G.
Associated with any symmetry group G there will be a whole class of nonlinear differential–
difference equations related to each other by point transformations. To simplify the results,
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we will just look for the simplest element of a given class of nonlinear differential–difference
equations, associated with a certain symmetry group. To do so we introduce so-called allowed
transformations, i.e. a set of transformations of the form

t̃ = t̃ (t), ñ = n un(t) = �n(ũn(t̃), t) (2.53)

that transform equation (2.50) into a different one of the same type. By a straightforward
calculation we find that the only allowed transformations (2.53) are given by

t̃ = t̃ (t), ñ = n, un(t) = An√
t̃ ,t (t)

ũn(t̃) + Bn(t) (2.54)

with Bn(t), An, t̃(t) arbitrary functions of their arguments.
Under an allowed transformation equation (2.50) is transformed into

ũn,t̃ t̃ (t̃ ) = F̃ n(n, t̃ , ũn+1(t̃), ũn(t̃), ũn−1(t̃)) (2.55)

with

F̃ n = 1

t̃
3
2
,tAn

Fn(n, t, {un+1(t), un(t), un−1(t)}) − Bn,tt −
3

4

t̃2
,t t

t̃
5
2
,t

− 1

2

t̃ ,t t t

t̃
3
2
,t

Anũn(t̃)


(2.56)

and a symmetry generator (2.51) into

̂̃X = [τ(t)t̃ ,t ]∂t̃ +


[
τ(t)

2

t̃ ,t t

t̃ ,t
+

1

2
τ,t (t) + an

]
ũn

+
t̃

1
2
,t

An

[
−τ(t)Bn,t (t) + Bn(t)

(
1

2
τ,t (t) + an

)
+ bn(t)

] ∂ũn
. (2.57)

We see that, up to an allowed transformation, every one-dimensional symmetry algebra
associated with equation (2.50) can be represented by one of the following vector fields:

X̂1 = ∂t + a1
nun∂un

X̂2 = a2
nun∂un

X̂3 = bn(t)∂un
(2.58)

where a
j
n with j = 1, 2 are two arbitrary functions of n and bn(t) is an arbitrary function of n

and t. The vector fields X̂j , j = 1, 2, 3, are the symmetry vectors of the Lie point symmetries
of the following nonlinear differential–difference equations:

X̂1 : un,tt = ea1
ntfn(ξn+1, ξn, ξn−1), with ξj = uj e−a1

j t

X̂2 : un,tt = unfn(t, ηn+1, ηn−1), with ηj = (uj )
a2
n

(un)
a2
j

X̂3 : un,tt = bn,tt

bn
un + fn(t, ζn+1, ζn−1) with ζj = ujbn(t) − unbj (t).

(2.59)

These equations are still quite general, as they are written in terms of arbitrary functions
depending on three continuous variables. More specific equations are obtained for larger
symmetry groups [173].

The Toda equation (2.3) is included in a class of equations whose infinitesimal symmetry
generators satisfy a four-dimensional solvable symmetry algebra with a non-Abelian nilradical.
The interactions in this class are given by

Fn(t, un−1(t), un(t), un+1(t)) = e−2 un+1−un
γn+1−γn fn(ξ) (2.60)
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where ξ = [γn(t) − γn+1(t)]un−1 + [γn+1(t) − γn−1(t)]un + [γn−1(t) − γn(t)]un+1 and the
function γn(t) is such that γn+1(t) �= γn(t) and ∂γn(t)

∂t
= 0. The associated symmetry generators

are

X̂1 = ∂un
, X̂2 = ∂t , X̂3 = t∂un

, Ŷ = t∂t + γn(t)∂un
. (2.61)

The Toda equation (2.3) is obtained by choosing γn(t) = 2n and fn(ξ) = −1 + e
1
2 ξ . Among

the equations of the class (2.50), the Toda equation does not have the largest group of point
symmetries.

A complete list of all equations of the type (2.50) with nontrivial symmetry group is
given in the original article [173] with the additional assumption that the interaction and
the vector fields depend continuously on n. Here we just give two examples of interactions
with symmetry groups with dimension seven. The first one is solvable, nonnilpotent and its
Lie algebra is given by

X̂1 = ∂un
, X̂2 = (−1)n∂un

, X̂3 = t∂un
,

X̂4 = (−1)nt∂u−n, X̂5 = (−1)nun∂un
, X̂6 = ∂t , X̂7 = t∂t + 2un∂un

.
(2.62)

The invariant equation is

un,tt = γn

un−1 − un+1
. (2.63)

This algebra was not included in [173] because of its nonanalytical dependence on n (in X̂2, X̂4

and X̂5).
The second symmetry algebra is nonsolvable; it contains the simple Lie algebra sl(2, R)

as a subalgebra. A basis of this algebra is

X̂1 = ∂un
, X̂2 = t∂un

, X̂3 = bn∂un

X̂4 = bnt∂un
, X̂5 = ∂t , X̂6 = t∂t + 1

2un∂un
, X̂7 = t2∂t + tun∂un

(2.64)

with bn,t = 0, bn+1 �= bn. The corresponding invariant nonlinear differential equation is:

un,tt = γn

[(bn+1 − bn)un−1 + (bn−1 − bn+1)un + (bn − bn−1)un+1]3
(2.65)

where γn and bn are arbitrary n-dependent constants.
In [268], the integrability conditions for equations belonging to the class (2.50) have been

considered. It has been shown that any equation of this class which has local generalized
symmetries can be reduced by point transformations of the form

ũn = σn(t, un), t̃ = θ(t) (2.66)

to either the Toda equation (2.3) or to the potential Toda equation

un,tt = eun+1−2un+un−1 . (2.67)

2.5. Symmetries of the two-dimensional Toda equation

Let us now apply the techniques introduced in section 2.2 to the two-dimensional Toda system
(TDTS)

�TDTS = un,xt − eun−1−un + eun−un+1 = 0 (2.68)

where un = un(x, t). We also impose that the lattice be invariant, i.e. x and t are independent
of n and ñ = n. The TDTS was proposed and studied by Mikhailov [195] and Fordy and
Gibbons [79] and is an integrable D�E, having a Lax pair, infinitely many conservation
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laws, Bäcklund transformations, soliton solutions and all the usual attributes of integrability
[1, 6, 35].

The continuous symmetries for equation (2.68) are obtained by considering the
infinitesimal symmetry generator

X̂ = ξn(x, t, un)∂x + τn(x, t, un)∂t + φn(x, t, un)∂un
. (2.69)

From the invariance condition (2.17) we get

τn = f (t), ξn = h(x), φn = (h,x + f,t )n + g(t) + k(x), (2.70)

where f (t), g(t), h(x) and k(x) are arbitrary C∞ functions. A basis for the symmetry algebra
is given by

T (f ) = f (t)∂t + nf,t ∂un
, U(g) = g(t)∂un

,

X(h) = h(x)∂x + nh,x∂un
, W(k) = k(x)∂un

,
(2.71)

where, to avoid redundancy, we must impose k,x �= 0.
The nonzero commutation relations are

[T (f1), T (f2)] = T (f1f2,t − f1,t f2), [T (f ), U(g)] = U(fg,t ),

[X(h1),X(h2)] = X(h1h2,x − h1,xh2),

[X(h),W(k)] =
{

W(hk,x), (hk,x),x �= 0

cU(1), (hk,x),x = 0, hk,x = c.

(2.72)

Thus {T (f ), U(g)} form a Kac–Moody–Virasoro û(1) algebra, as do {X(h),W(k), h,x �=
0, U(1)}. However the two û(1) algebras are not disjoint. This Kac–Moody–Virasoro
character of the symmetry algebra is found also in the case of a (2 + 1)-dimensional Volterra
equation [237]. It is also characteristic of many other integrable equations involving three
continuous variables, such as the Kadomtsev–Petviashvili or three-wave equations [43, 54,
55, 163, 194, 217, 261]. From the symmetry algebra we can construct the group of symmetry
transformations which leave the TDTS (2.68) invariant and transform noninvariant solutions
into new solutions. Moreover, we can use the subgroups to reduce the TDTS (2.68) to
equations in a lower dimensional space.

By adding to (2.68) the equation

�(1)
n = ξ(x, t, un)un,x + τ(x, t, un)un,t − φn(x, t, un) = 0 (2.73)

we obtain the conditional symmetries. It is easy to show that conditional symmetries in the
intrinsic method do not provide any further symmetry reduction. It is, however, worthwhile
noting that conditional symmetries in the differential equation method, when

X̂ = ξ(x, t, uj (x, t))∂x + τ(x, t, uj (x, t))∂t +
∑

k

φk(x, t, uj (x, t))∂uk
, (2.74)

contain the Bäcklund transformation of the TDTS. In fact, by choosing ξ = 0, τ = 1,
equation (2.73) reduces to �(1)

n = un,t − φn(x, t, uj ) = 0 and the determining equations are
solved by putting

φn(x, t, uj ) = fn,t (x, t) + a[eun−fn+1 − eun−1−fn ] (2.75)

where a is a real constant and fn(x, t) = ũn is a set of functions which solves the TDTS
(2.68). The Bäcklund transformation for the TDTS can be indeed written as [79]

un,t − ũn,t = a[eun−ũn+1 − eun−1−ũn], un−1,x − ũn,x = 1

a
[eũn−1−un−1 − eũn−un]. (2.76)
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3. Generalized point symmetries on a fixed uniform lattice

We saw in section 2 that point symmetries for purely difference equations on a fixed uniform
lattice do not provide very powerful tools, though they work well for differential–difference
equations.

Here we shall consider an approach that makes use of a certain type of generalized
symmetries that act simultaneously at more than one point of the lattice. We call them
‘generalized point symmetries’, because in the continuous limit they reduce to point
symmetries.

This approach is directly applicable to linear difference equations, indirectly to nonlinear
equations that are linearizable by a change of variables.

The underlying formalism is called ‘umbral calculus’, or ‘finite operator calculus’. Its
modern development is mainly due to Rota and his collaborators [232–234]. For a review
article with an extensive list of references, see [56]. Umbral calculus has been implicitly used
in mathematical physics [75, 76, 94, 145, 147, 162]. The only explicit use in physics that we
know of is in [44, 57, 156, 157].

3.1. Basic concepts of umbral calculus

Definition 1. A shift operator Tσ is a linear operator acting on polynomials or formal power
series f (x) in the following manner:

Tσf (x) = f (x + σ), x ∈ R, σ ∈ R. (3.1)

For functions of several variables we introduce shift operators in the same manner

Tσi
f (x1, . . . , xi−1, xi, xi+1, . . . , xn) = f (x1, . . . , xi−1, xi + σi, xi+1, . . . , xn). (3.2)

In this section, unless explicitly stated, we restrict the exposition to the case of one real
variable x ∈ R. The extension to n variables and other fields is obvious. We will sometimes
drop the subscript on the shift operator T when that does not give rise to misinterpretations.

Definition 2. An operator U is called a delta operator if it satisfies the following properties,

(1) It is shift invariant;

TσU = UTσ , ∀σ ∈ R, (3.3)

(2)

Ux = c �= 0, c = const, (3.4)

(3)

Ua = 0, a = const, (3.5)

and the kernel of U consists precisely of constants.

Important properties of delta operators are:

1. For every delta operator U there exists a unique series of basic polynomials {Pn(x)}
satisfying

P0(x) = 1 Pn(0) = 0, n � 1, UPn(x) = nPn−1(x). (3.6)
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2. For every delta operator U there exists a conjugate operator β, such that

[U, xβ] = 1. (3.7)

The operator β satisfies

β = (U ′)−1, U ′ = [U, x]. (3.8)

Equation (3.7) can be interpreted as the Heisenberg relation between the delta operator U
and its conjugate xβ.

We shall make use of two types of delta operators. The first is the ordinary (continuous)
derivative operator, for which we have

U = ∂x, β = 1, Pn(x) = xn. (3.9)

The second is a general difference operator which we define as

U = � = 1

σ

m∑
k=l

akT
k
σ , l, m ∈ Z, l < m, (3.10)

where ak and σ are real constants and Tσ is a shift operator. In order for � to be a delta
operator, we must impose

m∑
k=l

ak = 0. (3.11)

We shall also require that the continuous limit of � be ∂x . This imposes a further condition,
namely

m∑
k=l

kak = 1. (3.12)

Than equations (3.3), . . . , (3.5) hold, with c = 1.
If equations (3.11) and (3.12) are satisfied, we shall call � a difference operator of order

m − l. Acting with � on an arbitrary smooth function f (x) we have

�f (x) = 1

σ

m∑
k=l

akf (x + kσ) = 1

σ

∞∑
n=0

f (n)(x)

n!
σnγn,

γn =
m∑

k=l

akk
n, γ0 = 0, γ1 = 1,

(3.13)

where f (n)(x) = dnf (x)

dxn . Thus we have

�f (x) = df

dx
+

∞∑
n=2

f (n)(x)

n!
σn−1γn. (3.14)

For m − l � 2 we can impose further conditions, namely

γn = 0, n = 2, 3, . . . , m − l, (3.15)

and obtain

� = d

dx
+ O(σm−l ). (3.16)

From (3.8) the operator β conjugate to � is

β =
(

m∑
k=l

akkT k
σ

)−1

(3.17)
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and the basic polynomials are

Pn(x) = (xβ)n · 1. (3.18)

It was shown in [156] that equation (3.18) yields a well-defined polynomial of order n in x.
For any differential operator � all coefficients in Pn(x) are finite and each involves a finite
number of positive powers of shifts in σ .

The simplest examples of difference operators and the related quantities are

1.

�+ = T − 1

σ
, β = T −1,

Pn(x) = (x)n = x[x − σ ][x − 2σ ] . . . [x − (n − 1)σ ], n � 1
(3.19)

Order m − l = 1.
2.

�− = 1 − T −1

σ
, β = T ,

Pn(x) = (x)n = x[x + σ ][x + 2σ ] . . . [x + (n − 1)σ ], n � 1
(3.20)

Order m − l = 1.
3.

�s = T − T −1

2σ
, β =

(
T + T −1

2

)−1

,

P2n(x) = x2[x2 − 4σ 2] . . . [x2 − (2n − 2)2σ 2], n � 1,

P2n+1(x) = x[x2 − σ 2] . . . [x2 − (2n − 1)2σ 2], n � 1.

(3.21)

Order m − l = 2.

For any � we have P0 = 1 and P1 = x.
An important tool in the umbral calculus is the umbral correspondence. This is a bijective

mapping M between two delta operators U1 and U2. This will induce a mapping between the
corresponding operators β1 and β2, and also between the corresponding basic polynomials:

U1
M←→ U2, β1

M←→ β2, P (1)
n

M←→ P (2)
n . (3.22)

Let us now consider linear operators L(xβ,U) that are polynomials, or formal power
series in xβ and U. Since the umbral correspondence preserves the Heisenberg commutation
relation (3.7), it will also preserve commutation relations between the operators L(xβ,U). In
particular, we can take

U1 = ∂x, β1 = 1, U2 = �, β2 = β, (3.23)

where � is any one of the difference operators (3.10) and β is as in (3.17).
Let A1 be a Lie algebra of vector fields of the form

X̂α =
n∑

j=1

aj
α(x1, . . . , xn)∂xj

, [X̂α, X̂β ] = c
γ

αβX̂γ . (3.24)

The umbral correspondence will map this algebra onto an isomorphic Lie algebra A2 of
difference operators

X̂u
α =

n∑
j=1

aj
α(x1β1, . . . , xnβn)�xj

. (3.25)
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3.2. Umbral calculus and symmetries of linear difference equations

Lie point symmetries of linear differential equations can be expressed in terms of commuting
linear operators. Indeed, let us consider a linear differential equation

Lu = 0 (3.26)

where L is some linear differential operator. The Lie point symmetry algebra of this
equation can be realized by evolutionary vector fields of the form (1.11), satisfying
equation (1.13). If (3.26) is an ordinary differential equation of order 3 or higher, or a
partial differential equation of order 2 or higher, then the characteristic Q of the vector field
(1.11) will have a specific form. Using vector notation −→x = (x1, x2, . . . , xn) we can write
the characteristic as

Q = f (−→x ) + X̂u, (3.27)

where f (−→x ) is the general solution of equation (3.26) and X̂ is a first-order linear operator of
the form [19]

X̂ =
n∑

i=1

ξi(
−→x )∂xi

− φ(−→x ), (3.28)

satisfying

[L, X̂]u|Lu=0 = 0. (3.29)

Using the umbral correspondence, we can carry this result over to a class of linear
difference equations. Indeed, let us associate a difference operator LD with L by the umbral
correspondence ∂xi

→ �xi
, xi → xiβi . Equation (3.26) is replaced by a difference equation

LDu = 0. (3.30)

The analogue of equation (3.29) will hold, namely

[LD, X̂D]u|LDu=0 = 0. (3.31)

The difference operator X̂D will not generate point transformations taking solutions into
solutions. These difference operators do however provide commuting flows, i.e. difference
equations compatible with equation (3.30).

3.3. Symmetries of the linear time-dependent Schrödinger equation on a lattice

As an example let us apply the umbral correspondence to the free time-dependent Schrödinger
equation

i
∂ψ

∂t
+

n∑
i=1

∂2ψ

∂x2
i

= 0. (3.32)

We obtain the difference equation

LDψ = 0, LD = i�t +
1

2

n∑
k=1

(
�xk

)2, (3.33)

where �t and �xk
are any of the difference operators introduced in section 3.1. The symmetries

of equation (3.33) will be represented in terms of the ‘discrete’ evolutionary vector fields

X̂E
D = QD∂ψ + Q∗

D∂ψ∗, QD = ηD − τD�tψ − ξk
D�xk

ψ, (3.34)

where ηD, τD and ξk
D are functions of tβt , xjβj and ψ,ψ∗ (the * indicates complex

conjugation).
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As in the continuous case, it can be shown [156] that the characteristic Q will in this case
have the form

QD = χ(xkβk, tβt ) + iX̂Dψ, (3.35)

where χ is the general solution of equation (3.33). The first-order difference operator X̂D

satisfies

X̂D = i

[
τD(tβt )�t +

n∑
k=1

ξk
D�xk

− iηD

]
, (3.36)

[LD, X̂D]ψ |LDψ=0 = 0. (3.37)

Explicitating and solving equation (3.37), we obtain a difference realization of the
Schrödinger algebra, first obtained in the continuous case by Niederer [200]. A basis for
this algebra is given by the following operators:

P̂ 0 = �t, P̂ j = �xj
, L̂j,k = (xjβj )�xk

− (xkβk)�xj
,

B̂k = (tβt )�xk
− i

2
xkβk, D̂ = 2(tβt )�t −

n∑
k=1

(xkβk)�xk
+

1

2
,

Ĉ = (tβt )
2�t +

n∑
k=1

(tβt )(xkβk)�xk
+

1

2
tβt − in

4

n∑
k=1

(xkβk)
2, Ŵ = i.

(3.38)

Comparing with the continuous limit (or using the umbral correspondence), we see that
P̂ 0, P̂ j correspond to time and space translation, L̂j,k to rotations, B̂k to Galilei boosts, D̂ and
Ĉ to dilations and projective transformations and Ŵ to changes of phase of the wavefunction.

3.4. Symmetries of the discrete heat equation

As a further example let us consider the discrete heat equation

�xxu(x, t) − �tu(x, t) = 0. (3.39)

Equation (3.39) is a linear partial difference equation on a two-dimensional lattice. Floreanini,
Negro, Nieto and Vinet showed in [75] when � = �+ that (3.39) has a symmetry algebra
isomorphic to that of the continuous heat equation

u,xx(x, t) − u,t (x, t) = 0. (3.40)

This result can easily be recovered using the umbral calculus [145, 162].
Since (3.39) is linear, the symmetries are obtained by considering an evolutionary vector

field of the form

X̂e = Q∂u = (τ�t + ξ�x + f )u∂u (3.41)

and the determining equation is given by

�tQ − �xxQ|�xxu=�tu = 0 (3.42)

whose explicit expression is

�t(ξ�xu + τ�tu + f u) − �xx(ξ�xu + τ�tu + f u)|�xxu=�tu = 0. (3.43)

Defining Df = [�, f ] it is immediate to see that (Df ) · 1 = (�f ) · 1 and for the operator D
the Leibnitz rule is satisfied: Dfg = (Df )g + f (Dg). In terms of the operator D we can split
equation (3.43) into the following overdetermined system of equations:

Dxτ = 0, Dtτ − 2Dxξ = 0

Dtξ − Dxxξ − 2Dxf = 0, Dtf − Dxxf = 0.
(3.44)
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From the umbral correspondence the solution of equation (3.44) is

τ = τ2(tβt )
2 + τ1tβt + τ0

ξ = 1
2 (τ1 + 2τ2tβt )xβx + ξ1tβt + ξ0

f = τ2
[

1
4 (xβx)

2 + 1
2 tβt

]
+ 1

2ξ1xβx + f0

(3.45)

where τ0, τ1, τ2, ξ1, ξ0 and f0 are arbitrary constants, functions of the lattice spacing and shifts.
By a suitable choice of these constants, we get the following representation of the symmetries:

P̂ 0 = (�tu)∂u, P̂ 1 = (�xu)∂u

Ŵ = u∂u, B̂ = [2tβt�xu + xβxu]∂u

D̂ = [
2tβt�tu + xβx�xu + 1

2u
]
∂u

K̂ = [
(tβt )

2�tu + tβtxβx�xu +
(

1
4 (xβx)

2 + 1
2 tβt

)
u
]
∂u.

(3.46)

The results obtained above show the power and generality of umbral calculus. Starting from
the symmetry algebra of the continuous heat equation (known already to Sophus Lie) and
applying the umbral correspondence, we have obtained the symmetry algebra of the discrete
heat equation for a very large class of discretizations. Indeed, each � is any one of the
difference operators (3.10) of section 3.1 and β is the corresponding conjugate operator.
Without the umbral calculus each discretization must be considered separately [75, 76, 162]
and it is not at all obvious that all discretizations have the same symmetry algebra as the
continuous equation.

3.5. Discretization of a relativistic wave equation

Umbral calculus not only allows us to discretize linear equations while preserving their
symmetry algebras, but also allows us to solve the obtained difference equations. To see how
this works and how linear techniques, such as the separation of variables, can be adapted to
difference equations, let us consider a relativistic wave equation in two dimensions [156].

In the continuous case we write the equation in light cone variables as

R̂φ(x, y) = ∂2

∂x∂y

φ(x, y) = −kφ(x, y). (3.47)

Its symmetry algebra has basis

P̂ 1 = ∂x, P̂ 2 = ∂y, M̂ = x∂x − y∂y, (3.48)

corresponding to translations and Lorentz transformations.
Since the wave operator R̂ and the operator M̂ , generating Lorentz transformations,

commute, we can construct a complete set of common eigenfunctions, satisfying (3.47) and

M̂φ = λφ. (3.49)

The natural approach to this system would be to introduce a hyperbolic version of the polar
coordinates, namely

x = ρ

2
eα, y = ρ

2
e−α, (3.50)

where α is an ignorable variable. Instead, having in mind the umbral correspondence, we look
for a series solution of equation (3.47) in terms of solutions of equation (3.49):

φλ(x, y) =
∞∑

n=0

anx
n+λyn. (3.51)
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Substituting into (3.47) we determine an and obtain

φkλ(x, y) = xλ

∞∑
n=0

(−k)n
1

�(λ + n + 1)n!
(xy)n, (3.52)

or in the coordinates (3.50):

φkλ(ρ) = eλαk− λ
2 Jλ(

√
kρ), (3.53)

where Jλ is a Bessel function.
The umbral version of equations (3.47) and (3.49) is

�x�yψ = −kψ, (xβx�x − yβy�y)ψ = λψ, (3.54)

where again �x,�y are any difference operators with respect to the corresponding variable.
Using the umbral correspondence and equation (3.52) we immediately obtain a formal solution
of the system (3.54), namely

ψkλ(x, y) = (xβx)
λ

∞∑
n=0

(−k)n
1

�(λ + n + 1)n!
(xβx)

n(yβy)
n · 1. (3.55)

Here ψkλ(x, y) is a function, since all the operators β appearing on the right-hand side of
equation (3.55) are applied to a constant and we have e.g. βx · 1 = 1.

Two comments are in order here.

1. The series (3.52) converges for any value of x and y. In the discrete case the series (3.55)
is a formal solution for any choice of the difference operator �. However, the convergence
properties of the series depend on the choice of �. For instance, if � is �+ or �− of
equation (3.19), or (3.20), then we have β+ = T −1, or β− = T respectively. The series
(3.55) will converge in both cases for all values of x and y; however, the lattice spacing
must satisfy

σxσy <
1

k
. (3.56)

2. The expansion (3.55), contrary to (3.52), does not correspond directly to the separation
of variables in the coordinate (3.50) since the expression [(xβx)(yβy)]n is not a function
of xy alone. For instance for n = 2 and βx = T −1

x , βy = T −1
y we have(

xT −1
x

)2(
yT −1

y

)2 = x(x − σx)y(y − σy)T
−2
x T −2

y .

4. Generalized symmetries on fixed uniform lattices

4.1. Generalized symmetries of difference equations

We consider here the construction of generalized symmetries for integrable difference
equations and show the structure of the infinite-dimensional Lie algebra of point and higher
symmetries. We do so on an explicit example of a nonlinear difference equation known to
be integrable to provide a clear idea of the structure of the symmetry algebra. In particular
we will show that, for equations defined on a lattice, a subset of the generators of the infinite
symmetry algebra contracts in the continuum limit to the Lie algebra of a Lie point symmetry
group. We prove that in this approach the scaling symmetries are generalized symmetries.

We will not present the entire machinery of integrable systems here, nor the most general
definition of an integrable system. Good reviews on integrable discrete equations and on
their physical and numerical applications can be found in the literature [36, 46, 78, 250,
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252–254]. We will just consider here the minimal amount of ideas and results necessary
for readers who are not experts on soliton theory to understand the results on generalized
symmetries of discrete integrable systems presented below.

Generalized symmetries of difference equations are symmetries whose infinitesimal
generators depend on more than one point of the lattice and on derivatives of the continuous
variables. Noether was the first to notice in 1918 [208] that one can extend symmetries
of a differential equation by including higher derivatives of the dependent variables in the
transformation. They are more rare than point symmetries. We can obtain an infinite number
of generalized symmetries [211] when the system is integrable [1, 3, 6, 35, 71, 83–86,
199, 209, 269], i.e. when the equations can be written as the compatibility condition for an
overdetermined system of linear equations (the Lax pair) and can be linearized either directly
or via an inverse scattering transform.

Let us first review the situation in the case of the Korteweg–de Vries equation

ut (x, t) = uxxx(x, t) − 6u(x, t)ux(x, t), (4.1)

the prototype of the integrable partial differential equations. Equation (4.1) is characterized
by a nontrivial Lax pair [138]

L(u)ψ = λψ, (4.2)

ψt = −M(u)ψ, (4.3)

a system of linear equations compatible only on the solution set of equation (4.1). In
equations (4.2) and (4.3) λ is an eigenvalue, L and M are two linear operators with coefficients
depending on u but not on λ

L(u) = −∂xx + u(x, t), λ = k2, (4.4)

λt = 0, M(u) = −4∂xxx + 6u(x, t)∂x + 3ux(x, t). (4.5)

The function ψ , often called the wave or spectral function, depends on the independent
variables (x, t) and on λ. If λt = 0 then the compatible system is said to be isospectral
and λ is an integral of motion, together with all the functions which depend only on it. The
compatibility of equations (4.2) and (4.3) implies the Lax equation

Lt(u) = [L(u),M(u)] (4.6)

if λt = 0 or

Lt(u) = [L(u),M(u)] + f (L(u), t) (4.7)

for λt = f (λ, t). Here f (z, t) is an entire function of its first argument.
In the particular case when equation (4.2) is the Schrödinger spectral problem (4.4) and

u(x) vanishes at infinity, the solution of equation (4.4), for k ∈ R, has the following asymptotic
behaviour:

ψ(x, k) → e−ikx + R(k) eikx, (x → +∞), (4.8)

ψ(x, k) → T (k) e−ikx, (x → −∞), (4.9)

where T (k) is the transmission and R(k) is the reflection coefficient. It can easily be proven
that, when u(x, t) evolves according to the KdV equation (4.1) [35] the function T (k, t) is
conserved, i.e. Ṫ (k, t) = 0 and the reflection coefficient evolves according to the equation

Ṙ(k, t) = −8 ik3R(k, t). (4.10)
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For kj = ipj , j = 1, 2, . . . , N , the function ψ(x, pj ) = fj (x) is bounded at infinity and we
can define its normalization coefficient, ρj , as

ρj =
[∫ ∞

−∞
dxfj (x)2

]−1

j = 1, 2, . . . , N. (4.11)

The spectral transform S of the function u(x) is, by definition, the collection of data

S[u] = {R(k, t),−∞ < k < ∞;pj , ρj (t), j = 1, 2, . . . , N}. (4.12)

If we can associate a denumerable set of operators Mm(u),m = 1, 2, . . ., with the operator
L(u) then we will obtain from the Lax equations (4.6), (4.7) a denumerable set of equations, i.e.
a hierarchy of equations. In the case of the Schrödinger spectral problem (4.4) the hierarchy
of equations is written down in terms of a recursion operator L, obtained in an algorithmic
way from (4.4) [28, 35]

Lψ(x) = ψxx(x) − 4u(x, t)ψ(x) + 2ux(x, t)

∫ ∞

x

dyψ(y), (4.13)

and reads:

ut (x, t) = α(L, t)ux(x, t) + β(L, t)[xux(x, t) + 2u(x, t)]. (4.14)

The entire (with respect to the first argument) functions α and β characterize the equation of
the hierarchy. If only α is present then λ̇ = 0. If also β is present then λ̇ �= 0, and we have

k̇ = β(−4k2, t)k. (4.15)

With equation (4.14) we can associate an evolution of the reflection coefficient R(k)

dR(k, t)

dt
= 2ikα(−4k2, t)R(k, t), (4.16)

where by the symbol d
dt

we mean the total derivative with respect to t.
Lie symmetries, both point and generalized [211], can be written as flows commuting

with the equation under study, i.e. equations of the form

uε(x, t) = F(u, ux, ut , uxx, uxt , utt , . . .), u = u(x, t) = u(x, t; ε), (4.17)

such that uεt (x, t; ε) = utε(x, t; ε). In equation (4.17) ε plays the role of the group parameter.
As the KdV hierarchy (4.14) is given by evolutionary equations, in all generality its symmetries
can be written as

uε(x, t; ε) = Fl(u, ux, uxx, uxxx, . . . , ulx). (4.18)

Equation (4.18) is an evolutionary equation in the ‘time’ ε and thus any equation of the
hierarchy (4.14) is a symmetry for the KdV if it commutes with it. By taking into account
the one-to-one correspondence between the potential u and the spectrum S[u] one can easily
prove, by checking the commutativity of the spectrum, that the isospectral equations

uεj
(x, t; ε) = Ljux(x, t; ε) (4.19)

are symmetries. If β �= 0 then λ̇ �= 0 and only when

α(−4k2, t) = α0(−4k2) − 24k2β(−4k2)t (4.20)

the corresponding non-isospectral equation

uε(x, t; ε) = α(L, t)ux(x, t) + β(L)[xux(x, t) + 2u(x, t)] (4.21)

is a symmetry. In particular, choosing β(L) = 1 and α0 = 0 from equation (4.20) we get
α(L, t) = 6tL and the symmetry reads:

uε(x, t; ε) = 6tut (x, t) + xux(x, t) + 2u(x, t), (4.22)
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the usual dilation symmetry of the KdV equation [211]. The higher order non-isospectral
symmetries, when dβ(L)

dL �= 0, will all be nonlocal due to the form of the recursion operator
(4.13).

We have described here the integrability procedure in the case of partial differential
equations, where it was first introduced. This procedure has been extended to the case of
differential–difference and difference–difference equations [4, 5, 10, 45, 58, 72, 73, 183, 192,
202, 205, 244, 245].

In the case of an integrable differential–difference equation

un,t (t) = E(n, t, un(t), un+1(t), . . . , un+k(t)) (4.23)

the linear operators L and M that characterize it, depend on the shift operators in the discrete
variable n. The Lax equations (4.6) and (4.7) are still valid. The recursion operator L and
the Lax pair will depend on the shift operators, instead of x derivatives. This implies that the
higher equations of the hierarchy

un,t (t) = Ej(n, t, un(t), un+1(t), . . . , un+kj
(t)) (4.24)

and the higher symmetries will depend on points further away from the point n instead of
depending on higher derivatives. The situation is slightly different in the case of difference–
difference equations

E(n,m, un,m, un+1,m, un,m+1, . . .) = 0. (4.25)

The Lax pair in this case involves two linear operators Ln,m and Mn,m of the shift operator in
n with coefficients depending on un+j,m+i . The linear equation (4.3) is replaced by

ψn,m+1 = −Mn,m(u)ψn,m. (4.26)

The Lax equation in the isospectral regime (λm+1 = λm) now reads:

Ln,m+1Mn,m = Mn,mLn,m. (4.27)

In the nonisospectral case, when λm+1 = f (λm), with f (.) an entire function of its argument,we
have

Ln,m+1Mn,m = Mn,mf (Ln,m). (4.28)

Few results are known on generalized symmetries of difference–difference equations
[144, 189, 201]. The point and generalized symmetries for the discrete time Toda Lattice
(2.1) were computed in [144] using the techniques presented above. The Lie symmetries are
provided by evolutionary equations commuting with the original equation. So, for example,
the symmetries of the discrete time Toda Lattice (2.1) are given by the Toda Lattice hierarchy of
nonlinear differential–difference equations (4.33), with the evolution not in the time variable,
but in the group parameter.

In the following, we will construct an infinite class of symmetries for the Toda lattice.
We will construct formally all the generalized symmetries and present explicitly the simplest
examples. We will show the structure of the algebra of the generalized and point symmetries,
using the one-to-one correspondence between the configuration space and the spectral space,
where all equations are linear. In the continuous limit the Lie algebra of the point symmetries
of the potential KdV (4.83) is recovered, as are the generalized symmetries. Finally, we present
the Bäcklund transformations for the Toda lattice and show their relation to the symmetries
[134]. For the corresponding results for the Volterra equation, the completely discrete Toda
lattice and for the discrete nonlinear Schrödinger equation we refer to the literature [45, 101,
102, 107, 144, 149].
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4.2. The Toda system and its symmetries

The Toda equation (2.3) can be rewritten in the form of a system

ȧn(t) = an(t)(bn(t) − bn+1(t)), ḃn(t) = an−1(t) − an(t), (4.29)

where

bn = v̇n, an = evn−vn+1 . (4.30)

It can be associated with the discrete Schrödinger spectral problem [27, 38–40, 73]

ψ(n − 1, t; λ) + bnψ(n, t; λ) + anψ(n + 1, t; λ) = λψ(n, t; λ). (4.31)

The time evolution of the wavefunction ψ(n, t; λ) is given by

ψt(n, t; λ) = −an(t)ψ(n + 1, t; λ). (4.32)

For the point symmetries of the Toda equation see section 2.3.
With the spectral problem (4.31) we can associate a set of nonlinear differential–difference

equations (the Toda lattice hierarchy)(
ȧn

ḃn

)
= f1(L, t)

(
an(bn − bn+1)

an−1 − an

)
, (4.33)

where f1(L, t) is an entire function of its first argument and the recursion operator L is given
by

L
(

pn

qn

)
=
(

pnbn+1 + an(qn + qn+1) + (bn − bn+1)sn

bnqn + pn + sn−1 − sn

)
. (4.34)

The operator (4.34) was first obtained by Dodd [58] and by Bruschi, Levi and Ragnisco [26].
In equation (4.34) sn is a solution of the nonhomogeneous first-order equation

sn+1 = an+1

an

(sn − pn). (4.35)

For any equation of the hierarchy (4.33) we can write an explicit evolution equation for the
function ψ(n, t; λ) [27, 29, 31] such that λ does not evolve in time. This is possible if the
following boundary conditions

lim
|n|→∞

an − 1 = lim
|n|→∞

bn = lim
|n|→∞

sn = 0, (4.36)

are imposed on the fields an, bn and sn. The boundedness of the solutions of equations (4.36)
was not required in the literature [26, 29, 31], but it is necessary to get a hierarchy of nonlinear
differential–difference equations with well-defined evolution of the spectra. We can than
associate with equation (4.31) a spectrum S[u] [27, 72, 73, 192, 253] defined in the complex
plane of the variable z (λ = z + z−1):

S[u] = {R(z, t), z ∈ C1; zj , cj (t), |zj | < 1, j = 1, 2, . . . , N}, (4.37)

where R(z, t) is the reflection coefficient, C1 is the unit circle in the complex z plane, zj

are isolated points inside the unit disc and cj are some complex functions of t related to
the residues of R(z, t) at the poles zj . When an, bn and sn satisfy the boundary conditions
(4.36), the spectral data define the potentials in a unique way. Thus, there is a one-to-one
correspondence between the evolution of the potentials (an, bn) of the discrete Schrödinger
spectral problem (4.31), given by equation (4.33) and that of the reflection coefficient R(z, t),
given by

dR(z, t)

dt
= µf1(λ, t)R(z, t), µ = z−1 − z. (4.38)

In equation (4.38) and below, d
dt

denotes the total derivative with respect to t.
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The Toda system is obtained from equation (4.33) by choosing f1(λ, t) = 1 and thus the
evolution equation of the reflection coefficient is given by

dR(z, t)

dt
= µR(z, t). (4.39)

The symmetries for the Toda system (4.29), or the Toda equation (2.3) are provided by
all flows commuting with the equation itself. Let us introduce the following denumerable set
of equations: (

an,εk

bn,εk

)
= Lk

(
an(bn − bn+1)

an−1 − an

)
. (4.40)

Here k is any positive integer and εk is a variable. We can associate with the equation (4.40)
an evolution of the reflection coefficient

dR

dεk

= µλkR. (4.41)

It can be verified directly that the flows (4.39) and (4.41) commute and hence the same
must be true for the corresponding equations, i.e. for the Toda system (4.29) and the
equations (4.40). This implies that equations (4.40) are symmetries of the Toda system and
consequently εk is a group parameter. From the point of view of the spectral problem (4.31),
equations (4.40) correspond to isospectral deformations, i.e. we have λεk

= 0. For any εk , the
solution of the Cauchy problem for equation (4.40) provides a solution of the Toda system
(4.29) (an(t, εk), bn(t, εk)) in terms of the initial condition [an(t, εk = 0), bn(t, εk = 0)].
The group transformation corresponding to the group parameter εk can usually be written
explicitly only for the lowest values of k. In the case of the generalized symmetries, the group
action is obtained in principle by solving the Cauchy problem for the nonlinear characteristic
equation starting from a generic solution of the Toda lattice. This often cannot be done. In all
cases we can construct just a few classes of explicit group transformations corresponding to
very specific solutions of the Toda lattice equation, namely the solitons, the rational solutions
and the periodic solutions [253]. In all cases one can use the symmetries (4.40) to do, for
example, symmetry reduction and to reduce the equation under consideration to an ordinary
differential equation, or possibly a functional one. This is done by looking for fixed points of
the transformation, i.e. putting an,εk

= 0, bn,εk
= 0,

We can extend the class of symmetries by considering nonisopectral deformations of the
spectral problem (4.31) [77, 83, 84, 149, 179]. Thus for the Toda system we obtain(

an,εk

bn,εk

)
= Lk+1t

(
an(bn − bn+1)

an−1 − an

)
+ Lk

(
an[(2n + 3)bn+1 − (2n − 1)bn]

b2
n − 4 + 2[(n + 1)an − (n − 1)an−1]

)
. (4.42)

In correspondence with equation (4.42) we have the evolution of the reflection coefficient
(4.37), given by

dR

dεk

= µλk+1tR, λεk
= µ2λk, (4.43)

The proof that equations (4.42) are symmetries is done by showing that the flows (4.43) and
(4.39) in the space of the reflection coefficients commute.

In addition to the above two hierarchies of symmetries (4.40) and (4.42), we can construct
two further cases, which, however, do not satisfy the asymptotic boundary conditions (4.36).
They are: (

an,ε

bn,ε

)
=
(

0
1

)
,

(
an,ε

bn,ε

)
= t

(
an(bn − bn+1)

an−1 − an

)
+

(
2an

bn

)
. (4.44)
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As these exceptional symmetries do not satisfy the asymptotic boundary conditions (4.36), we
cannot write a corresponding evolution equation for the reflection coefficient (4.37).

Let us now write the lowest order symmetries for the Toda system (4.29) that one can get
from the hierarchies (4.40), (4.42). In the case of the Toda lattice (2.3) the symmetries
are obtained from those of the Toda system (4.29) by using the transformation (4.30).
The symmetries of the Toda lattice and the Toda system, corresponding to the isospectral
and nonisospectral flows, will have the same evolution of the reflection coefficient. The
transformation (4.30) involves an integration (to obtain un). The integration constant must be
chosen so as to satisfy the following boundary conditions:

lim
|n|→∞

vn = 0. (4.45)

In the case of the exceptional symmetries such an integration will provide an additional
symmetry.

Taking k = 0, 1 and 2 in equation (4.40) we obtain the first three isospectral symmetries
for the Toda system, namely:

an,ε0 = an(bn − bn+1), bn,ε0 = an−1 − an, (4.46)

an,ε1 = an

[
b2

n − b2
n+1 + an−1 − an+1

]
, bn,ε1 = an−1[bn + bn−1] − an[bn+1 + bn], (4.47)

an,ε2 = an

[
b3

n − b3
n+1 + anbn − 2an+1bn+1 + an−1bn−1 + 2an−1bn

− an+1bn+2 − anbn+1 − 2bn + 2bn+1
]
,

(4.48)
bn,ε2 = an−1

[
b2

n + b2
n−1 + bnbn−1 + an−1 + an−2 − 2

]
− an

[
b2

n + b2
n+1 + bnbn+1 + an+1 + an − 2

]
.

The lowest nonisospectral symmetry is obtained from equation (4.42), taking k = 0. It is

an,ν = an

{
t
[
b2

n − b2
n+1 + an−1 − an+1

]
+ (2n + 3)bn+1 − (2n − 1)bn

}
,

bn,ν = t{an−1(bn + bn−1) − an(bn+1 + bn)} + b2
n − 4 + 2[(n + 1)an − (n − 1)an−1].

(4.49)

The nonisospectral symmetries for k > 0 are nonlocal.
The exceptional symmetries (4.44) are

an,µ0 = 0, bn,µ0 = 1, (4.50)

an,µ1 = 2an + t ȧn, bn,µ1 = bn + t ḃn. (4.51)

The corresponding symmetries for the Toda lattice are

vn,ε0 = v̇n (4.52)

vn,ε1 = v̇2
n + evn−1−vn + evn−vn+1 − 2 (4.53)

vn,ε2 = v̇3
n − 2v̇n + evn−1−vn(v̇n−1 + 2v̇n) + evn−vn+1(v̇n+1 + 2v̇n) (4.54)

vn,ν = t
{
v̇2

n + evn−1−vn + evn−vn+1 − 2
}− (2n − 1)v̇n + wn(t), (4.55)

where wn(t) is defined by the following compatible system of equations:

wn+1(t) − wn(t) = −2v̇n+1, ẇn(t) = 2(evn−vn+1 − 1). (4.56)

Under the assumption (4.45) we can integrate equations (4.56) and obtain a formal solution.
That is, we can write wn(t) in the form of an infinite sum;

wn(t) = 2
∞∑

j=n+1

v̇j + α, (4.57)
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where α is an arbitrary integration constant which can be interpreted as an additional symmetry.
The exceptional symmetries read:

vn,µ1 = t v̇n − 2n (4.58)

vn,µ0 = t (4.59)

and the additional one, due to the integration

vn,µ−1 = 1. (4.60)

4.2.1. The symmetry algebra for the Toda lattice. To define the structure of the symmetry
algebra for the Toda lattice we need to compute the commutation relations between the
symmetries, i.e. between the flows commuting with the equations of the hierarchy. Using the
one-to-one correspondence between the integrable equations and the evolution equations for
the reflection coefficients, we calculate the commutation relations between the symmetries
and thus analyse the structure of the obtained infinite-dimensional Lie algebra.

If we define

Lk =
(
L(k)

11 L(k)
12

L(k)
21 L(k)

22

)
, (4.61)

we can write the generators for the isospectral symmetries as

X̂T
k = {

L(k)
11 [an(bn − bn+1)] + L(k)

12 (an−1 − an)
}
∂an

+
{
L(k)

21 [an(bn − bn+1)] + L(k)
22 (an−1 − an)

}
∂bn

. (4.62)

The superscript on the generator X̂ is there to indicate that this is the symmetry generator
for the Toda system (4.29). We will indicate by the superscript TL the symmetry generators
for the Toda Lattice (2.3). With these generators we can associate symmetry generators in the
space of the reflection coefficients. These generators are written as

X̂ T
k = µλkR∂R. (4.63)

In agreement with Lie theory, whenever R is an analytic function of ε, the corresponding
flows are given by solving the equations

dR̃

dεk

= µλkR̃,
dλ

dεk

= 0, R̃(εk = 0) = R. (4.64)

One can prove that the isospectral symmetry generators (4.62) commute amongst each
other [

X̂T
k , X̂T

m

] = 0, (4.65)

by computing the corresponding commutation relation in the space of the reflection coefficients[
X̂ T

k , X̂ T
m

] = [µλkR∂R, µλmR∂R] = 0. (4.66)

So far, the use of the vector fields in the reflection coefficient space has just reexpressed
a known result, namely that the commutation of the reflection coefficients is rewritten as
equation (4.66). We now extend the use of vector fields in the space of the spectral data to the
case of the nonisospectral symmetries (4.42). Using the definition (4.61) we can introduce the
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generators of the nonisospectral symmetries for the Toda system. The symmetry vector fields
are

Ŷ T
k = {

t
[
L(k+1)

11 [an(bn − bn+1)] + L(k+1)
12 (an−1 − an)

]
+ L(k)

11 [an((2n + 3)bn+1 − (2n − 1)bn)]

+L(k)
12

[
b2

n − 4 + 2(n + 1)an − 2(n − 1)an−1
]}

∂an

+
{
t
[
L(k+1)

21 [an(bn − bn+1)] + L(k+1)
22 (an−1 − an)

]
+L(k)

21 [an((2n + 3)bn+1 − (2n − 1)bn)]

+L(k)
22

[
b2

n − 4 + 2(n + 1)an − 2(n − 1)an−1
]}

∂bn
. (4.67)

Taking into account equation (4.43), we can define the symmetry generators (4.67) in the
space of the spectral data as

ŶT
k = µλk+1tR∂R + µ2λk∂λ. (4.68)

Commuting ŶT
k with ŶT

m we have[
ŶT

k , ŶT
m

] = (m − k)
[
ŶT

k+m+1 − 4ŶT
k+m−1

]
. (4.69)

From the relation between the spectral space and the space of the solutions, we conclude that
the vector fields representing the symmetries of the studied evolution equations, satisfy the
same commutation relations[

Ŷ T
k , Ŷ T

m

] = (m − k)
[
Ŷ T

k+m+1 − 4Ŷ T
k+m−1

]
. (4.70)

In a similar manner we can work out the commutation relations between the Ŷk and X̂m

symmetry generators. We get:[
X̂ T

k , ŶT
m

] = −(1 + k)X̂ T
k+m+1 + 4kX̂ T

k+m−1, (4.71)

and consequently[
X̂T

k , Ŷ T
m

] = −(1 + k)X̂T
k+m+1 + 4kX̂T

k+m−1. (4.72)

Relations such as (4.70) and (4.72) can also be checked directly, but the use of the vector field
in the reflection coefficient space is much more efficient.

Let us now consider the commutation relations involving the exceptional symmetries
(4.44). We write them as

ẐT
0 = ∂bn

(4.73)

ẐT
1 = [2an + t ȧn]∂an

+ [bn + t ḃn]∂bn
. (4.74)

As mentioned in section 4.1, these symmetries do not satisfy the asymptotic conditions (4.36).
Hence we cannot write down the commutation relations in all generality for all symmetries
simultaneously. We calculate explicitly the commutation relations involving just ẐT

0 and
ẐT

1 , X̂T
0 , X̂T

1 and Ŷ T
0 . The nonzero commutation relations are[

X̂
T

0 , ẐT
1

] = −X̂
T

0 ,
[
ẐT

0 , ẐT
1

] = ẐT
0[

Ŷ T
0 , ẐT

0

] = −2ẐT
1 ,

[
Ŷ T

0 , ẐT
1

] = −Ŷ T
0 − 8ẐT

0 ,
[
X̂

T

1 , ẐT
0

] = −2X̂
T

0 , (4.75)[
X̂

T

1 , ẐT
1

] = −2X̂
T

1 ,
[
X̂

T

0 , Ŷ T
0

] = −X̂
T

1 ,
[
X̂

T

1 , Ŷ T
0

] = −2X̂
T

2 + 4X̂
T

0 .

In the case of the Toda lattice (2.3) we have (see equations (4.59), (4.58))

ẐT L
0 = t∂vn

(4.76)

ẐT L
1 = [t v̇n − 2n]∂vn

(4.77)
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and

ẐT L
−1 = ∂vn

(4.78)

in correspondence with equation (4.60). As equations (2.3) and (4.29) are just two different
representations of the same system, the symmetry generators in the space of the spectral data
are the same. Consequently, the commutation relations between X̂TL

n and Ŷ TL
m are given by

equations (4.66), (4.70) and (4.72). The symmetries X̂TL
0 , X̂TL

1 and Ŷ TL
0 , according to equations

(4.52), (4.53), (4.55) are given by

X̂TL
0 = v̇n∂vn

, X̂TL
1 = [

v̇2
n + evn−1−vn + evn−vn+1 − 2

]
∂vn

Ŷ TL
0 = {

t
[
v2

n,t + evn−1−vn + evn−vn+1 − 2
]− (2n − 1)vn,t + wn(t)

}
∂vn

(4.79)

wn+1(t) − wn(t) = −2v̇n+1, ẇn(t) = 2(evn−vn+1 − 1).

The nonzero commutation relations are:[
X̂TL

0 , ẐTL
0

] = −ẐTL
−1,

[
X̂TL

0 , ẐTL
1

] = −X̂TL
0 ,[

X̂TL
0 , Ŷ TL

0

] = −X̂TL
1 + ωẐTL

−1,[
X̂TL

1 , ẐTL
0

] = −2X̂TL
0 ,

[
X̂TL

1 , ẐTL
1

] = −2X̂TL
1 − 4ẐTL

−1,
(4.80)[

X̂TL
1 , Ŷ TL

0

] = −2X̂TL
2 + 4X̂TL

0 + σẐTL
−1,[

Ŷ TL
0 , ẐTL

−1

] = βẐTL
−1,

[
Ŷ TL

0 , ẐTL
0

] = −2ẐTL
1 + γ ẐTL

−1,[
Ŷ TL

0 , ẐTL
1

] = −Ŷ TL
0 − 8ẐTL

0 + δẐTL
−1,

[
ẐTL

0 , ẐTL
1

] = ẐTL
0 ,

where (β, γ, δ, ω, σ ) are integration constants. The presence of these integration constants
indicates that the symmetry algebra of the Toda equation is not completely specified. The
constants appear whenever the symmetry Ŷ TL

0 is involved. The ambiguity is related to the
ambiguity in the definition of Ŷ TL

0 itself, i.e. in the solution of equation (4.79) for wn(t).
We fix these coefficients by requiring that one obtains the correct continuous limit, i.e. in the
asymptotic limit, when h goes to zero, a combination of the generators of the Toda Lattice
(2.3) and Toda system (4.29) goes over to the symmetry algebra of the potential Korteweg–de
Vries equation (see section 4.2.2).

The commutation relations obtained above determine the structure of the infinite-
dimensional Lie symmetry algebras. The first symmetry generators are given in equations
(4.62), (4.67), (4.73) and (4.74) and the corresponding commutation relations are given by
equations (4.70), (4.72) and (4.75). As one can see, the symmetry operators Ŷ T

k and ẐT
k are

linear in t and the coefficient of t is an isospectral symmetry operator X̂T
k . Consequently, as

the operators X̂T
k commute amongst each other, the commutator of X̂T

m with any of the Ŷ T
k or

ẐT
k symmetries will not have any explicit time dependence and thus can be written in terms

of X̂T
n only. Thus the structure of the Lie algebra for the Toda system can be written as:

L = L0 � L1, L0 = {
ĥ, ê, f̂ , Ŷ T

1 , Ŷ T
2 , . . .

}
, L1 = {

X̂T
0 , X̂T

1 , . . .
}

(4.81)

where
{
ĥ = ẐT

1 , ê = ẐT
0 , f̂ = Ŷ T

0 + 4ẐT
0

}
denotes a sl(2, R) subalgebra with [ĥ, ê] =

ê, [ĥ, f̂ ] = −f̂ , [ê, f̂ ] = 2ĥ. The algebra L0 is perfect, i.e. we have [L0, L0] = L0. It
is worthwhile noting that ẐT

0 , ẐT
1 and X̂T

0 are point symmetries while all the others are
generalized symmetries. Indeed, all the other vector fields involve other values of the discrete
variable than n or time derivatives of the fields.

For the Toda lattice equation the point transformations are X̂TL
0 , ẐTL

0 and ẐTL
1 , as

for the Toda system, plus the additional ẐTL
−1. Taking into account equations (4.76)–

(4.80), the structure of the Lie algebra is the same as that of the Toda system with
L0 = {

ẐTL
−1, Ẑ

TL
0 , ẐTL

1 , Ŷ TL
0 , Ŷ TL

1 , Ŷ TL
2 , . . .

}
, L1 = {

X̂TL
0 , X̂TL

1 , X̂TL
2 , . . .

}
.
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4.2.2. Contraction of the symmetry algebras in the continuous limit. It is well known
[27, 31, 153, 154, 253] that the Toda equation has the potential Korteweg–de Vries equation
as one of its possible continuous limits. In fact, by setting

vn(t) = − 1
2hu(x, τ ) x = (n − t)h τ = − 1

24h3t (4.82)

we can write equation (2.3) as(
uτ − uxxx − 3u2

x

)
x

= O(h2) (4.83)

i.e. the once differentiated potential Korteweg–de Vries equation. Let us now rewrite the
symmetry generators in the new coordinate system defined by (4.82) and develop them for
small h in Taylor series. We have

X̂
TL
0 =

{
−ux(x, τ )h − 1

24
uτ (x, τ )h3

}
∂u (4.84)

X̂TL
1 =

{
−2ux(x, τ )h − 1

3
uτ (x, τ )h3 + O(h5)

}
∂u (4.85)

X̂
TL
2 =

{
−4ux(x, τ )h − 7

6
uτ (x, τ )h3 + O(h5)

}
∂u (4.86)

Ŷ TL
0 = {2[u(x, τ ) + xux(x, τ ) + 3τuτ (x, τ )] + O(h)}∂u (4.87)

ẐTL
−1 = − 2

h
∂u, ẐTL

0 = 48

h4
τ∂u (4.88)

ẐTL
1 =

{
−96

h4
τ +

4

h2
[x + 6τux(x, τ )] + O(1)

}
∂u. (4.89)

To obtain equations (4.85)–(4.87) we have used the following evolution for u:

uτ = uxxx + 3u2
x. (4.90)

The point symmetry generators written in the evolutionary form, for the potential Korteweg–de
Vries equation (90) read:

P̂ 0 = uτ ∂u, P̂ 1 = ux∂u, B̂ = [x + 6τux]∂u, (4.91)

D̂ = [u + xux + 3τuτ ]∂u, �̂ = ∂u, (4.92)

and their commutation table is

P̂ 0 P̂ 1 B̂ D̂ �̂

P̂ 0 0 0 −6P̂ 1 −3P̂ 0 0
P̂ 1 0 −�̂ −P̂ 1 0
B̂ 0 2B̂ 0
D̂ 0 −�̂

�̂ 0.

(4.93)

Let us now consider the continuous limit h → 0 of the symmetry algebra of the Toda
equation. We can write the simplest symmetry generators of the Toda equation as a linear
combination of the generators (4.84)–(4.89), so that in the continuous limit they go over to the
generators of the point symmetries of the potential Korteweg–de Vries equations (4.91) and
(4.92):

P̃ 0 = 4

h3

(
2X̂TL

0 − X̂TL
1

)
, P̃ 1 = − 1

h
X̂TL

0 , D̃ = 1

2
Ŷ TL

0 , (4.94)
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B̃ = h2

4

(
2ẐTL

0 + ẐTL
1

)
, �̃ = −h

2
ẐTL

−1. (4.95)

Taking into account the commutation table between the generators X̂TL
0 , X̂TL

1 , ẐTL
−1, Ẑ

TL
0 , ẐTL

1

and Ŷ TL
0 , given by (4.80) and the continuous limit of X̂TL

2 given by equation (4.86), we get:

P̃ 0 P̃ 1 B̃ D̃ �̃

P̃ 0 0 0 −6P̃ 1 + O(h2) −3P̃ 0 + O(h2) 0
P̃ 1 0 −�̃ + O(h2) −P̃ 1 + O(h2) 0
B̃ 0 2B̃ + O(h2) 0
D̃ 0 −�̃

�̃ 0.

(4.96)

The results contained in table (4.96) are obtained by setting β = −2, 2γ + δ = 0 and
ω = σ = 0. Thus, we have reobtained in the continuous limit, all point symmetries of the
potential KdV equation. The limit partially fixes the previously undetermined constants in
equation (4.80). To get all point symmetries of the potential KdV equation we needed not
only the point symmetries X̂TL

0 , ẐTL
0 , ẐTL

−1 and ẐTL
1 of the Toda equation, but also the higher

symmetries X̂TL
1 , Ŷ TL

0 .
This procedure can be viewed as a new application of the concept of Lie algebra

contractions. Lie algebra contractions were first introduced by Inönü and Wigner [121] in order
to relate the group theoretical foundations of relativistic and nonrelativistic physics. The speed
of light c was introduced as a parameter into the commutation relations of the Lorentz group.
For c → ∞ the Lorentz group ‘contracted’ to the Galilei group. Lie algebra contractions thus
relate different Lie algebras of the same dimension, but of different isomorphism classes. A
systematic study of contractions, relating large families of nonisomorphic Lie algebras of the
same dimension, based on Lie algebra grading, was initiated by Moody and Patera [197].

In general Lie algebra and Lie group contractions are extremely useful when describing
the mathematical relation between different theories. The contraction parameter can be the
Planck constant, when relating quantum systems to classical ones. It can be the curvature k of
a space of constant curvature, which for k → 0 goes to a flat space. The contraction will then
relate special functions defined e.g. on spheres, to those defined in a Euclidean space [127].

In our case the contraction parameter is the lattice spacing h. Some novel features appear.
First of all, we are contracting an infinite-dimensional Lie algebra of generalized symmetries,
that of the Toda lattice. The contraction leads to an infinite-dimensional Lie algebra, not
isomorphic to the first one. This ‘target algebra’ is the Lie algebra of point and generalized
symmetries of the potential KdV equation. A particularly interesting feature is that the five-
dimensional Lie algebra of point symmetries of the potential KdV is obtained from a subset
of point and generalized symmetries of the Toda equation. This five-dimensional subset is
not an algebra (it is not closed under commutations). It does contract into a Lie algebra in the
continuous limit.

4.2.3. Bäcklund transformations for the Toda equation. In addition to symmetry
transformations presented in section (4.2.1), the Toda system admits Bäcklund transformations
[25, 29, 34, 35, 58, 103, 139, 143, 150]. They are discrete transformations (i.e. mappings) that
starting from a solution, produce a new solution. Bäcklund transformations commute amongst
each other, allowing the definition of a soliton superposition formula that endows the evolution
equation with an integrability feature. Using the spectral transform [35] we can write down
families of Bäcklund transformations. They are obtained by requiring the existence of two
essentially different solutions to the Lax equations (4.2), (4.3), ψ(x, t; λ) and ψ̃(x, t; λ). These
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two solutions will be associated with two different solutions to the Lax equation (4.6), (4.7),
u(x, t) and ũ(x, t) and consequently two different Lax pairs (L(u),M(u)) and (L(ũ),M(ũ)).
If a transformation exists between u and ũ then there must exist a transformation between
ψ(x, t; λ) and ψ̃(x, t; λ) and between (L(u),M(u)) and (L(ũ),M(ũ)). This implies that
there will exist an operator D(u, ũ), often called the Darboux operator which will relate
ψ̃(x, t; λ) and ψ(x, t; λ), i.e.

ψ̃(x, t; λ) = D(u, ũ)ψ(x, t; λ). (4.97)

Taking into account the Lax equations for ψ(x, t; λ) and ψ̃(x, t; λ), we get from (4.97) the
following operator equations for D:

L̃(ũ)D(u, ũ) = D(u, ũ)L(u), (4.98)

Dt(u, ũ) = D(u, ũ)M(u) − M(ũ)D(u, ũ). (4.99)

From equations (4.98) and (4.99) we get a class of Bäcklund transformations, which we will
symbolically write as Bj(u(x, t), ũ(x, t), . . .) characterized by a recursion operator �.

In the discrete case, the technique is basically the same, and in the case of the matrix
discrete Schrödinger spectral problem, a generalization of the scalar problem (4.31), the
appropriate developments are found in [30]. Specializing to the scalar case, the class of
Bäcklund transformations associated with the Toda system (4.29) is given by

γ (�)

(
ã(n) − a(n)

b̃(n) − b(n)

)
= δ(�)

(
�̃(n)�−1(n + 1)(b̃(n) − b(n + 1))

�̃(n − 1)�−1(n) − �̃(n)�−1(n + 1)

)
, (4.100)

where γ (z) and δ(z) are entire functions of their argument and we have denoted

�(n) =
∞∏

j=n

a(j), �̃(n) =
∞∏

j=n

ã(j). (4.101)

Above, � is the recursion operator

�

[
p(n)

q(n)

]
=



p(n)b(n+1) + ã(n)[q(n) + q(n + 1)] + �(n)[b̃(n) − b(n + 1)]

+[a(n) − ã(n)]
∞∑

j=n

p(j)

p(n) + b̃(n)q(n) − �(n) + �(n − 1) + [b(n) − b̃(n)]
∞∑

j=n

q(j)


(4.102)

and

�(n) = �̃(n)

 ∞∑
j=n

�̃(j)−1p(j)�(j + 1)

�−1(n + 1). (4.103)

In [31] it is proven that whenever (an, bn) and (ãn, b̃n) satisfy the asymptotic conditions (4.36)
and the Bäcklund transformations (4.100), the reflection coefficient satisfies the equation

R̃(λ) = γ (λ) − δ(λ)z

γ (λ) − δ(λ)/z
R(λ). (4.104)

For the Toda lattice (2.3) the one-soliton Bäcklund transformation, when the functions
γ (λ) and δ(λ) are constant, reads:

˙̃v(n) − v̇(n + 1) = γ

δ
{ev(n+1)−ṽ(n+1) − ev(n)−ṽ(n)}. (4.105)
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Formulae (4.100)–(4.104) also provide much more general transformations, i.e. higher
order Bäcklund transformations. If the arbitrary functions γ (λ) and δ(λ) are polynomials,
then we have a finite-order Bäcklund transformation that can be interpreted as a composition
of a finite number of one-soliton transformations. In more general cases, when γ (λ) and δ(λ)

are entire functions, we face an infinite-order Bäcklund transformation.
In the following section, we discuss how Bäcklund transformations are related to

continuous symmetry transformations, allowing, albeit formally, an integration of the latter.

4.2.4. Relation between Bäcklund transformations and higher symmetries. A general
isospectral higher symmetry of the Toda equation is given by(

an,ε

bn,ε

)
= φ(L)

(
an(bn − bn+1)

an−1 − an

)
, (4.106)

with the spectrum evolution

dR(λ, ε)

dε
= µφ(λ)R(λ, ε). (4.107)

These equations generalize equation (4.40), used above. In equations (4.106), (4.107) the
function φ is an entire function of its argument. Equation (4.107) can be formally integrated
in the spectral parameter (λ) space, giving

R(λ, ε) = eµφ(λ)R(λ, 0). (4.108)

Taking into account the following definitions of λ and µ in terms of z,

λ = 1

z
+ z, µ = 1

z
− z, µ2 = λ2 − 4, (4.109)

z = λ − µ

2
,

1

z
= λ + µ

2
, (4.110)

we can rewrite the general Bäcklund transformation (4.104) as

R̃(λ) = 2 − (λ − µ)β(λ)

2 − (λ + µ)β(λ)
R(λ), β(λ) = δ(λ)

γ (λ)
.

In order to identify a general symmetry transformation with a Bäcklund transformation, and
vice versa, we equate R(λ, ε) = R̃(λ)

eµφ(λ) = 2 − (λ − µ)β(λ)

2 − (λ + µ)β(λ)
(4.111)

and find that φ(λ) in equation (4.108) is given by

φ(λ) = 1

µ
ln

[
2 − (λ − µ)β(λ)

2 − (λ + µ)β(λ)

]
. (4.112)

The right-hand side of equation (4.112) must not depend on µ. Relations (4.109) allow us to
separate the exponential in (4.111) into two entire components E0(λ) and E1(λ) satisfying

eµφ(λ) = cosh[µφ(λ)] + µ
sinh[µφ(λ)]

µ
= E0(λ) + µE1(λ). (4.113)

Noting that the rhs of equation (4.112) is rational in µ, developing µ2 and identifying powers
(0th and 1st) of µ, we get a system of two compatible equations

−(2 − λβ)E0 + (λ2 − 4)βE1 = −(2 − λβ), (4.114)
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−βE0 + (2 − λβ)E1 = β. (4.115)

Equations (4.114), (4.115) provide us with explicit formulae relating a given general higher
symmetry (characterized by φ, and thus E0, E1) with a general Bäcklund transformation
(characterized by γ and δ, and thus by β):

β(λ) = δ(λ)

γ (λ)
= 2E1

E0 + λE1 + 1
= 2 sinh[µφ(λ)]/µ

cosh[µφ(λ)] + λ sinh[µφ(λ)]/µ + 1
. (4.116)

From this equation we see that whatsoever be the symmetry, we find a Bäcklund transformation,
i.e. for an arbitrary function φ we obtain the two entire functions γ and δ. Vice versa, given a
general Bäcklund transformation, we can find a corresponding generalized symmetry

E0 = −2(β2 − 1) + λβ(2 − λβ)

2(β2 − λβ + 1)
, E1 = − (λβ − 2)β

2(β2 − λβ + 1)
, (4.117)

or more explicitly,

φ(λ) = 1

µ
sinh−1

[
−µ

(λβ − 2)β

2(β2 − λβ + 1)

]
. (4.118)

In the case of a one-soliton Bäcklund transformation with β = 1, we have:

E0 = −λ

2
, E1 = 1

2
and we can write φ(λ) as

φ(λ) = sinh−1[
√

λ2 − 4/2]√
λ2 − 4

. (4.119)

In this simple case we can write the symmetry in a closed form as an infinite sequence of
elementary symmetry transformations:

φ(λ) =
∞∑

k=0

[
(2k)!π

k!(k − 1)!24k+2
λ2k +

1

2

k!(k + 1)!

(2k + 2)!
λ2k+1

]
. (4.120)

In this way, the existence of a one-soliton transformation implies the existence of an infinite-
order generalized symmetry.

Let us consider the time shift symmetry given by φ(λ) = 1. Then equation (4.113)
implies that E0 = cosh µ and E1 = sinh µ/µ. According to (4.116) the corresponding higher
Bäcklund transformation is

δ(λ) = 2 sinh µ/µ (4.121)

γ (λ) = cosh µ + λ sinh µ/µ + 1. (4.122)

This Bäcklund transformation, corresponding to the point symmetry studied, is of infinite
order.

5. Lie point symmetries of difference schemes

In this section we take a point of view complementary to that of sections 2–4. We restrict
ourselves to continuous point symmetries only. On the other hand, we shall consider flexible
difference schemes, with group transformations acting on the entire scheme. We make full
use of the formalism presented in section 1.2 of the introduction.

The difference scheme, i.e. the difference equation and the lattice are described by the nE

equations (1.18). The group transformations transform solutions of this scheme amongst each
other.

We shall consider ordinary and partial difference schemes separately.
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5.1. Lie point symmetries of ordinary difference schemes

As stated in the introduction, an O�S will consist of two equations of the form (1.18). For
instance, a 3-point scheme can be written as

Ea(xn−1, xn, xn+1, un−1, un, un+1) = 0, a = 1, 2 (5.1)

satisfying equation (1.19) with M = 1, N = −1 (possibly after an upshift or downshift of n).
When taking the continuous limit it is convenient to introduce different quantities, namely

differences between neighbouring points and discrete derivatives like

h+ = xn+1 − xn, h− = xn − xn−1,

ux = un+1 − un

xn+1 − xn

, ux = un − un−1

xn − xn−1
,

uxx = 2
u,x − u,x

xn+1 − xn−1
, . . . .

(5.2)

In the continuous limit, we have

h+ → 0, h− → 0, ux → u′, ux → u′, uxx → u′′.

As a clarifying example of the meaning of the difference scheme (1.18), let us consider a
three-point scheme that will approximate a second-order linear difference equation:

E1 = un+1 − 2un + un−1

(xn+1 − xn)2
− un = 0, (5.3)

E2 = xn+1 − 2xn + xn−1 = 0. (5.4)

The solution of equation E2 = 0 determines a uniform lattice

xn = hn + x0. (5.5)

The scale h and the origin x0 in equation (5.5) are not fixed by equation (5.4), instead
they appear as integration constants, i.e., they are a priori arbitrary. Once they are chosen,
equation (5.3) reduces to a linear difference equation with constant coefficients, since we have
xn+1 − xn = h. Thus, a solution of equation (5.3) will have the form

un = λxn . (5.6)

Substituting (5.6) into (5.3) we obtain the general solution of the difference scheme (5.3),
(5.4),

u(xn) = c1λ
xn

1 + c2λ
xn

2 , xn = hn + x0,

λ1,2 =
(

2 + h2 ± h
√

4 + h2

2

)1/2

.
(5.7)

The solution (5.7) of system (5.3)–(5.4) depends on four arbitrary constants c1, c2, h and x0.
Now let us consider a general three-point scheme of the form (5.1) The two conditions on

the Jacobians (1.19) are sufficient to allow us to calculate (xn+1, un+1) if (xn−1, un−1, xn, un)

are known. Similarly, (xn−1, un−1) can be calculated if (xn, un, xn+1, un+1) are known. The
general solution of the scheme will hence depend on four arbitrary constants and will have the
form

un = f (xn, c1, c2, c3, c4) (5.8)

xn = φ(n, c1, c2, c3, c4). (5.9)
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A treasury of information on difference equations and their solutions can be found in
many classical books [70, 130, 196, 255].

Here we shall follow rather closely the article [158] and use the formalism outlined in
section 1.2.

As in the case of differential equations, our basic tool will be vector fields of the form
(1.4). In the case of O�S they will have the form

X̂ = ξ(x, u)∂x + φ(x, u)∂u, (5.10)

with

x ≡ xn, u ≡ un = u(xn).

Because we are considering point transformations, ξ and φ in (5.10) depend on x and u at one
point only.

The prolongation of the vector field X̂ is as in equation (1.20), i.e. we prolong to all points
of the lattice figuring in scheme (1.18). In these terms the requirement that the transformed
function ũ(x̃) and the variable x̃ should satisfy the same O�S as the original u(x) is expressed
by the requirement

pr X̂Ea|E1=E2=0 = 0, a = 1, 2. (5.11)

Since we must respect both the difference equation and the lattice, we have two conditions
(5.11) from which to determine ξ(x, u) and φ(x, u). Since each of these functions depends
on a single point (x, u) and the prolongation (1.20) introduces N − M + 1 points in space
X×U , equation (5.11) will imply a system of determining equations for ξ and φ. Moreover, in
general this will be an overdetermined system of linear functional equations that we transform
into an overdetermined system of linear partial differential equations [7, 8].

Let us first of all check that the prolongations (1.20) have the correct continuous limit.
We consider the first prolongation in the discrete case

pr1X̂ = ξ(x, u)∂x + φ(x, u)∂u + ξ(x+, u+)∂x+ + φ(x+, u+)∂u+ ,

x+ ≡ xn+1, u+ ≡ un+1,
(5.12)

and apply it to a function of the variables x, u, h+, ux (5.2). The continuous limit is recovered
by taking h → 0 and putting

u+ = u(x+) = u(x) + hu′(x) + · · · ,
ξ(x+, u+) = ξ(x, u) + h(ξ,x + ξ,uu

′) + · · · , (5.13)

φ(x+, u+) = φ(x, u) + h(φ,x + φ,uu
′) + · · · ,

where u′ is the (continuous) derivative of u(x). We have

pr1
DX̂F (x, u, h, ux) =

{
ξ∂x + φ∂u + [ξ,x + ξ,uu

′]h∂h

+ [−u′(ξ,x + ξ,uu
′) + φ,x + φ,uu

′]∂ux
+ · · ·

}
F.

In the limit when h → 0 we obtain

lim
h→0

pr1
DX̂ = ξ(x, u)∂x + φ(x, u)∂u + φx(x, u, u′)∂u′, (5.14)

φx = φ,x + (φ,u − ξ,x)u
′ − ξ,uu

′2, (5.15)

which is the correct expression for the first prolongation in the continuous case [211]. The
proof that the nth prolongation (1.20) has the correct continuous limit can be performed by
induction.
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5.2. Examples

5.2.1. Power nonlinearity on a uniform lattice. Let us consider a difference scheme that is a
discretization of the ODE

u′′ − uN = 0, N �= 0, 1. (5.16)

For N �= −3, equation (5.16) is invariant under a two-dimensional Lie group whose Lie
algebra is given by

X̂1 = ∂x, X̂2 = (N − 1)x∂x − 2u∂u (5.17)

(translations and dilations). For N = −3 the symmetry algebra is three-dimensional,
isomorphic to sl(2, R), i.e., it contains a third element in addition to (5.17). A convenient
basis for the symmetry algebra of the equation

u′′ − u−3 = 0 (5.18)

is

X̂1 = ∂x, X̂2 = 2x∂x + u∂u, X̂3 = x(x∂x + u∂u). (5.19)

A very natural O�S that has (5.16) as its continuous limit is

E1 = un+1 − 2un + un−1

(xn+1 − xn)2
− uN

n = 0 N �= 0, 1 (5.20)

E2 = xn+1 − 2xn + xn−1 = 0. (5.21)

Let us now apply the symmetry algorithm described in section 5.1 to system (5.20)–(5.21).
To illustrate the method, we shall present (just once) all calculations in detail.

First, we choose two variables that will be substituted into equation (5.11), once the
prolonged vector field (1.20) is applied to system (5.20)–(5.21), namely

xn+1 = 2xn − xn−1

un+1 = (xn − xn−1)
2uN

n + 2un − un−1,
(5.22)

where, xn, unxn−1, un−1 are our independent variables. By applying pr X̂ of (5.10) to
equation (5.22) we get:

ξ = b = b1x + b0, (5.23)

where b0 and b1 are constants. To obtain the function φ(xn, un), we apply prX to
equation (5.20) and obtain

φ = φ1u + φ0(x), φ1 = const (5.24)

where φ0(x) satisfies the equation

φ0(2xn − xn−1) − 2φ0(xn) + φ0(xn−1) − (xn − xn−1)
2((N − 1)φ1 + 2b1)u

N
n

−N(xn − xn−1)
2φ0u

N−1
n = 0. (5.25)

We have N �= 0, 1 and hence (5.25) implies that

φ0 = 0, (N − 1)φ1 + 2b1 = 0. (5.26)

We have thus proven that the symmetry algebra of the O�S (5.20)–(5.21) is the same as that
of the ODE (5.16), namely the algebra (5.17).

We observe that the value N = −3 is not distinguished here and that system (5.20)–(5.21)
is not invariant under SL(2, R) for N = −3. Actually, a difference scheme invariant under
SL(2, R) does exist and it will have equation (5.18) as its continuous limit. It will not however
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have the form (5.20)–(5.21), and the lattice will not be uniform [66, 67]. The corresponding
SL(2, R) invariant scheme is presented below in section 5.3.3.

Had we taken a two-point lattice, xn+1 − xn = h with h fixed, instead of E2 = 0 as in
(5.21), we would only have obtained translational invariance for the equation (5.20) and lost
the dilational invariance represented by X2 of equation (5.17).

5.2.2. An O�S involving an arbitrary function on a uniform lattice. We consider

E1 = un+1 − 2un + un−1

(xn+1 − xn)2
− f

(
un − un−1

xn − xn−1

)
= 0, (5.27)

E2 = xn+1 − 2xn + xn−1 = 0, (5.28)

where f (z) is some sufficiently smooth function satisfying

f ′′(z) �= 0. (5.29)

The continuous limit of equations (5.27) and (5.28) is

u′′ − f (u′) = 0, (5.30)

and it is invariant under a two-dimensional group with Lie algebra,

X̂1 = ∂x, X̂2 = ∂u, (5.31)

for any function f (u′). For certain functions f the symmetry group is three-dimensional,
where the additional basis element of the Lie algebra is

X̂3 = (ax + bu)∂x + (cx + du)∂u. (5.32)

Now let us consider the discrete system (5.27)–(5.28). Before applying pr X̂ to this system
we choose two variables to substitute into equation (5.11), namely xn+1 and un+1. Applying
pr X̂ to equation (5.28) and then to (5.27) and performing the same kind of passages necessary
to solve the determining equation as we did for equation (5.22) we get

ξ = αx + β, (5.33)

with α = const, β = const and

φ(x + h, u + hz + h2f (z)) − 2φ(x, u) + φ(x − h, u − hz)

= 2αh2f (z) + h2f ′(z)
(

φ(x, u) − φ(x − h, u − hz)

h
− αz

)
(5.34)

where we have defined

z =
[
un − un−1

xn − xn−1

]
, h = xn+1 − xn. (5.35)

In general, equation (5.34) is quite difficult to solve and for most functions f (z) it has no
other solutions than those corresponding to (5.31).

However, if we make the choice

f (z) = e−z (5.36)

we find that equation (5.34) is solved by putting

α = 1, φ = x + u. (5.37)

Finally, we find that the system
un+1 − 2un + un−1

(xn+1 − xn)2
= exp

(
un − un−1

xn − xn−1

)
, xn+1 − 2xn + xn−1 = 0 (5.38)

is left invariant by a three-dimensional transformation group, generated by the solvable Lie
algebra with basis

X̂1 = ∂x, X̂2 = ∂u, X̂3 = x∂x + (x + u)∂u. (5.39)

For further examples see the original article [158] and the lectures [264].
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5.3. Symmetry preserving discretization of ordinary differential equations

5.3.1. General comments. In sections 5.1 and 5.2 we assumed that an O�S (1.18) is given
and we showed how to determine its symmetries.

Here we will discuss a different problem, namely the construction of O�S with a priori
given symmetry groups. More specifically, we start from a given ODE

E(x, y, ẏ, ÿ, . . .) = 0 (5.40)

and its symmetry algebra, realized by vector fields of the form (5.10). We now wish to
construct an O�S (1.18), approximating the ODE (5.40) and having the same symmetry
algebra (and the same symmetry group).

This can be done systematically, once the order of the ODE (5.40) is fixed. In general,
the motivation for such a study is multifold. In physical applications the symmetry may
actually be more important than the equation itself. A discrete scheme with the correct
symmetries has a good chance of describing the physics correctly. This is specially true
if the underlying phenomena really are discrete and the differential equations come from a
continuum approximation. Furthermore, the existence of point symmetries for differential
and difference equations makes it possible to obtain explicit analytical solutions. Finally, a
discretization respecting point symmetries should provide improved numerical methods.

Let us first outline the general method of discretization. If the ODE (5.40) is of order N
we need an O�S involving at least N + 1 points, i.e. N + 1 pairs

{xi, ui; i = 1, . . . , N + 1}. (5.41)

The procedure is as follows

(1) Take the Lie algebra g of the symmetry group G of the ODE (5.40) and prolong the
(known) vector fields {X̂1, . . . , X̂n} to all N + 1 points (5.41), as in equation (1.20).

(2) Find a basis for all invariants of the (prolonged) Lie algebra g in the space (5.41)
of independent and dependent variables. Such a basis will consist of K functionally
independent invariants

Ia = Ia(x1, . . . , xN+1, u1, . . . , uN+1), 1 � a � K. (5.42)

They are determined by solving the differential equations

pr X̂iIa(x1, . . . , xN+1, u1, . . . , uN+1) = 0, i = 1, . . . , n. (5.43)

Alternatively, the invariants can be found using the moving frame method developed by
Olver and collaborators [24, 212–214]. The actual number K satisfies

K = 2N + 2 − (dim g− dim g0) (5.44)

where g0 is the Lie algebra of the subgroup G0 ⊂ G, stabilizing the N + 1 points (5.41).
We need at least two independent invariants of the form (5.42) to write an invariant O�S.

(3) If the number of invariants is not sufficient, we can make use of invariant manifolds.
To find them, we first write out the matrix of coefficients of the prolonged vector fields
{X̂1, . . . , X̂n} :

M =

ξ11 ξ12 . . . ξ1N+1 φ11 φ12 . . . φ1N+1

...
...

...
...

...
...

ξn1 ξn2 . . . ξnN+1 φn1 φn2 . . . φnN+1

 (5.45)

and determine the manifolds on which the rank of M, Rank(M), satisfies

Rank(M) < min(n, 2N + 2), (5.46)

i.e. is less than maximal. The invariant manifolds are then obtained by requiring that
equation (5.43) be satisfied on the manifold satisfying equation (5.46).
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5.3.2. Symmetries of second-order ODEs. Let us now restrict to the case of a second-order
ODE

ü = F(x, u, u̇). (5.47)

Sophus Lie gave a symmetry classification of second-order ODE’s (over the field of complex
numbers C) [180, 181]. A similar classification over R is much more recent [190, 191].

The main classification results can be summed up as follows.

(1) The dimension n = dim g of the symmetry algebra of equation (5.47) can be dim g =
0, 1, 2, 3 or 8.

(2) If we have dim g = 1 we can decrease the order of equation (5.47) by 1. If the dimension
is dim g � 2 we can integrate by quadratures.

(3) If we have dim g = 8, then the symmetry algebra is sl(3, C), or sl(3,R), respectively.
The equation can be transformed into ÿ = 0 by a point transformation.

Further symmetry results are due to Noether [208] and Bessel–Hagen [18]. Every ODE (5.47)
can be interpreted as an Euler–Lagrange equation for some Lagrangian density

L = L(x, u, u̇). (5.48)

The equation is

∂L
∂u

− D

(
∂L
∂u̇

)
= 0, D = ∂

∂x
+ u̇

∂

∂u
+ ü

∂

∂u̇
+ · · · . (5.49)

An infinitesimal divergence symmetry, or a Lagrangian symmetry is a vector field X̂ (5.10)
satisfying

pr X̂(L) + LD(ξ) = D(V ), V = V (x, u), (5.50)

where V is some local function of x and u. A symmetry of the Lagrangian L is always
a symmetry of the Euler–Lagrange equation (5.49); however, equation (5.49) may have
additional, non-Lagrangian symmetries.

A relevant symmetry result is that if we have dim g = 1, or dim g = 2 for equation
(5.47), then there always exists a Lagrangian having the same symmetry. For dim g = 3, at
least a two-dimensional subalgebra of the Lagrangian symmetries exists. For dim g = 8 a
four-dimensional solvable subalgebra of Lagrangian symmetries exists.

Once a Lagrangian (5.48) is found for which equation (5.47) is the Euler–Lagrange
equation, every Lagrangian symmetry can be used to find a first integral. Indeed, Noether’s
theorem tells us that if X̂ of equation (5.10) is a Lagrangian symmetry of equation (5.47), then
K defined by

ξL + (η − ξu′)
dL
du′ − V = K (5.51)

is a first integral of this equation.
If we have two such first integrals K1 and K2, we can eliminate the derivative u′ from

them and thus obtain the general solution of the ODE. For differential equations this is not
particularly useful, since it is easier to use the symmetries to integrate directly. However,
this Lagrangian integration procedure is the one that generalizes to difference systems (see
section 5.3.4).
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5.3.3. Symmetries of the three-point difference schemes. A symmetry classification of
three-point difference schemes was performed quite recently [66, 67]. It is similar to Lie’s
classification of second-order ODE’s and goes over into this classification in the continuous
limit. We shall now review the main results of the classification following the method outlined
in section 5.3.1.

Sophus Lie [182] gave a classification of all finite-dimensional Lie algebras that can be
realized by vector fields of the form (5.10). This was done over the field C and thus amounts
to a classification of finite-dimensional subalgebras of diff(2, C), the Lie algebra of the group
of diffeomorphisms of the complex plane C

2. A similar classification of finite-dimensional
subalgebras of diff(2, R) exists [93], but we restrict ourselves to the simpler complex case.

For the sake of brevity, we introduce the following notation for three neighbouring points
on the lattice:

x− = xn−1, x = xn, x+ = xn+1,

u− = un−1, u = un, u+ = un+1.
(5.52)

Let us now proceed by dimension of the symmetry algebras.
dim g = 1. A single vector field can always be rectified into the form

A1,1 : X̂1 = ∂

∂u
. (5.53)

The invariant ODE is

ü = F(x, u̇). (5.54)

Putting u̇ = y we obtain a first-order ODE.
The difference invariants of X1 are

x, h+ = x+ − x, h− = x − x−, η+ = u+ − u, η− = u − u−. (5.55)

Using these invariants and the notation (5.2), we can write a difference scheme

uxx = F
(
x,

ux + ux

2
, h−

)
, h+ = h−G

(
x,

ux + ux

2
, h−

)
. (5.56)

This scheme goes into equation (5.54) if we require that the otherwise arbitrary functions F
and G satisfy

lim
h−→0

F
(
x,

ux + ux

2
, h−

)
= F(x, u̇), lim

h−→0
G
(
x,

ux + ux

2
, h−

)
< ∞. (5.57)

dim g = 2. Precisely four equivalence classes of two-dimensional subalgebras of diff(2, C)

exist. Let us consider them separately.
A2,1

X̂1 = ∂x, X̂2 = ∂u. (5.58)

The algebra A2,1 is Abelian, the elements X1 and X2 are linearly nonconnected (linearly
independent at any point (x, y)). The invariant ODE is

ü = F(u̇), (5.59)

and can be immediately integrated.
An invariant difference scheme is given by any two relations between the invariants

h+, h−, η+, η− of equation (5.55), for instance

uxx = F
(ux + ux

2
, h−

)
, h+ = h−G

(ux + ux

2
, h−

)
, (5.60)

with conditions (5.57) imposed on the functions F and G.
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A2,2

X̂1 = ∂u, X̂2 = x∂x + u∂u (5.61)

This Lie algebra in non-Abelian, the two elements are linearly nonconnected. The invariant
ODE is

ü = 1

x
F(u̇). (5.62)

A basis for the difference invariants is{
xuxx, ux + ux,

h+

h−
,
h−
x

}
(5.63)

so a possible invariant difference scheme is

uxx = 1

x
F

(
ux + ux

2
,
h−
x

)
, h+ = h−G

(
ux + ux

2
,
h−
x

)
. (5.64)

A2,3

X̂1 = ∂u, X̂2 = x∂u. (5.65)

The algebra is Abelian, the elements X̂1 and X̂2 are linearly connected. The invariant ODE is

ü = F(x). (5.66)

This equation is linear and hence has an eight-dimensional symmetry algebra isomorphic to
SL(2, C) (of which A2,3 is just a subalgebra).

The difference invariants are

{uxx̄, x, h+, h−} (5.67)

so the invariant difference scheme will also be linear (at least in the dependent variable u).
A2,4

X̂1 = ∂u, X̂2 = u∂u (5.68)

The algebra is non-Abelian and isomorphic to A2,2, but with linearly connected elements. The
invariant ODE is again linear,

ü = F(x)u̇, (5.69)

as is the invariant difference scheme. Equation (5.69) is invariant under the group SL(3, C).
Difference invariants are{

ξ = 2
uxx

ux + ux

, x, h+, h−

}
(5.70)

and a possible invariant O�S is

2
uxx

ux + ux

= F(x, h−), G(x, h+, h−) = 0. (5.71)

dim g = 3. We now turn to difference schemes invariant under three-dimensional symmetry
groups. We will restrict ourselves to the case when the corresponding ODE is nonlinear.
Hence we will omit all algebras that contain A2,3 or A2,4 subalgebras (they were considered
in [66]).

A3,1

X̂1 = ∂x, X̂2 = ∂u, X̂3 = x∂x + ku∂u, k �= 0, 1
2 , 1, 2. (5.72)

The invariant ODE is

ü = u̇
k−2
k−1 . (5.73)
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For k = 1 there is no invariant second-order equation; for k = 2 the equation is linear, for
k = 1

2 it is trasformable into a linear equation and has a larger symmetry group (namely
SL(3, C).

Difference invariants are

I1 = h+

h−
, I2 = uxh

1−k
+ , I3 = uxh

1−k
− . (5.74)

A simple invariant difference scheme is

uxx =
(ux + ux

2

)[ k−2
k−1 ]

f
(ux + ux

2
h1−k

−
)

, h+ = h−g
(ux + ux

2
h1−k

−
)

. (5.75)

We shall see below that other invariant schemes may be more convenient.

A3,2

X̂1 = ∂x, X̂2 = ∂u, X̂3 = x∂x + (x + u)∂u. (5.76)

The invariant ODE is

ü = e−u̇. (5.77)

Difference invariants in this case are

I1 = h+

h−
, I2 = h+e−ux , I3 = h−e−ux . (5.78)

A possible invariant scheme is

uxx = e− ux +ux

2 f
(√

h−h+e− ux +ux

2

)
, h+ = h−g

(√
h−h+e− ux +ux

2
)
. (5.79)

No further solvable three-dimensional subalgebras of diff(2, C) exist (though there is
another family for diff(2, R) [66]).

Two inequivalent realizations of sl(2, C) leading to second order invariant ODES exist.
Let us consider them separately.

A3,3

X̂1 = ∂x, X̂2 = 2x∂x + u∂u, X̂3 = x2∂x + xu∂u. (5.80)

The corresponding invariant ODE is

ü = u−3, (5.81)

and its general solution is

u2 = A(x − x0)
2 +

1

A
, A �= 0. (5.82)

A convenient set of difference invariants is

I1 = h+

uu+
, I2 = h−

h+ + h−

u+

u
,

I3 = h+

h+ + h−

u−
u

, I4 = h−
uu−

.

(5.83)

Any three of these are independent; the four satisfy the identity

I1I2 = I3I4. (5.84)

An invariant difference scheme can be written as

2(I2 + I3 − 1) = I 2
1 I2

I2 + I3

I3
f (I1I2), I1 + I4 = 4I1I2g(I1I2), (5.85)
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i.e.

uxx̄ = 1

h+ + h−

1

u2

(
h+

u+
+

h−
u−

)
f

(
1

u2

h+h−
h+ + h−

)
,

h+

u+
+

h−
u−

= 4

u

h+h−
h+ + h−

g

(
1

u2

h+h−
h+ + h−

)
.

(5.86)

For f = g = 1 this scheme approximates the ODE (5.81). We see that this sl(2, C) invariant
O�S is quite different from the standard discretization (5.20).

A3,4

X̂1 = ∂u, X̂2 = x∂x + u∂u, X̂3 = x2∂x + (−x2 + u2)∂u. (5.87)

This algebra is again sl(2, C) and can be transformed into

Ŷ1 = ∂x + ∂u, Ŷ2 = x∂x + u∂u, Ŷ3 = x2∂x + u2∂u. (5.88)

The realization (5.88) (and hence also (5.87)) is imprimitive; (5.76) is primitive. Hence A3.4

and A3.3 are not equivalent. The invariant ODE for the algebra (5.87) is

xü = C(1 + u̇2)
3
2 + u̇(1 + u̇2), (5.89)

where C is a constant. The general integral of equation (5.89) can be written as

(x − x0)
2 + (u − u0)

2 =
(x0

C

)2
, C �= 0, (5.90)

x2 + (u − u0)
2 = x2

0 , C = 0, (5.91)

where x0 and u0 are integration constants.
The difference invariants corresponding to the algebra (5.88) are

I1 = x+ − x

x+x

(
1 + u2

x

)
, I2 = x − x−

x−x

(
1 + u2

x

)
,

I3 = − (x+ − x)(x − x−)

2xx+x−

{
(h+u

2
x + x+ + x)ux + (h−u2

x − x− − x)ux

}
.

(5.92)

An invariant scheme representing the ODE (5.89) can be written as

I3 = C

(
I1 + I2

2

) 3
2

, I1 = I2, (5.93)

(this is not the most general such scheme).

5.3.4. Lagrangian formalism and solutions of three-point O�S. In section 5.3.2 we presented
a Lagrangian formalism for second-order ODE’s. Let us now adapt it to O�S [67].

The Lagrangian density (5.48) will now be a two-point function

L = L(x, u, x+, u+). (5.94)

Instead of the Euler–Lagrange equation (5.49) we have two quasiextremal equations
[60, 64, 67] corresponding to ‘discrete variational derivatives’ of L with respect to x and
y independently

δL
δx

= h+
∂L
∂x

+ h−
∂L−

∂x
+ L− − L = 0,

δL
δu

= h+
∂L
∂u

+ h−
∂L−

∂u
= 0 (5.95)

where L− is obtained by downshifting L (replacing n by n−1 everywhere). In the continuous
limit both quasiextremal equations reduce to the same Euler–Lagrange equation. Thus, the
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two quasiextremal equations together can be viewed as an O�S, where e.g. the difference
between them defines the lattice.

The Lagrangian density (5.94) will be divergence invariant under the transformation
generated by vector field X̂, if it satisfies

pr X̂(L) + LD+(ξ) = D+(V ) (5.96)

for some function V (x, u) where D+(f ) is the discrete total derivative

D+f (x, u) = f (x + h, u(x + h)) − f (x, u)

h
(5.97)

Each infinitesimal Lagrangian divergence symmetry operator X will provide one first integral
of the quasiextremal equation

h−φ
∂L−

∂u
+ h−ξ

∂L−

∂x
+ ξL− − V = K (5.98)

[67]. These first integrals will have the form

fa(x, x+, u, u+) = Ka, a = 1, . . . . (5.99)

Thus, if we have two first integrals, we are left with a two point O�S to solve. If we have
three first integrals, then the quasiextremal equations reduce to a single two-point difference
equation, e.g. involving just xn and xn+1. This can often be solved explicitly [196].

This procedure has been systematically applied to three-point O�S in the original article
[67]. For brevity we will just consider some examples here.

Let us first consider a two-dimensional Abelian Lie algebra and the corresponding
invariant second-order ODE:

X̂1 = ∂x, X̂2 = ∂u, ü = F(u̇). (5.100)

This equation is the Euler–Lagrange equation for the Lagrangian

L = u + G(u̇), G̈ = 1

F
, (5.101)

and both symmetries are Lagrangian ones

pr X̂1L + LD(ξ1) = 0, pr X̂2L + LD(ξ2) = 1 = D(x). (5.102)

The corresponding two first integrals are

J1 = u + G(u̇) − u̇Ġ(u̇), J2 = Ġ(u̇) − x. (5.103)

Introducing H as the inverse function of Ġ we have

u̇ = H(J2 + x), H(J2 + x) = [Ġ]−1(J2 + x). (5.104)

Substituting into the first equation in equation (5.103), we obtain the general solution of
(5.100) as

u(x) = J1 − G[H(J2 + x)] + (J2 + x)H(J2 + x). (5.105)

Now let us consider the discrete case. We introduce the discrete analogue of (5.101) as

L = u + u+

2
+ G(ux) (5.106)

for some smooth function G. Equations (5.102) hold (with D interpreted as the discrete total
derivative D+). The two quasiextremal equations are

x+ − x−
2

− Ġ(ux) + Ġ(ux) = 0,

uxĠ(ux) − uxĠ(ux) − G(ux) + G(ux) − u+ − u−
2

= 0.

(5.107)
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The two first integrals obtained using Noether’s theorem in this case can be written as

Ġ(ux) − x + x+

2
= B (5.108)

−uxĠ(ux) + G(ux) + u +
1

2
(x+ − x)ux = A. (5.109)

In principle, these two integrals can be solved to obtain

ux = H
[
B + 1

2 (x+ + x)
]
, u = �(A,B, x, x+), (5.110)

where H [z] = [Ġ]−1(z) and � is obtained by solving equation (5.109), once ux = H is
substituted into this equation. A three-point difference equation for xn+2, xn+1 and xn, not
involving u is obtained from the consistency condition ux = un+1−un

xn+1−xn
. In general this equation

is difficult to solve. We shall follow a different procedure which is less general, but works well
when the considered O�S has a three-dimensional solvable symmetry algebra with {∂x, ∂u}
as a subalgebra. We add a third equation to the system (5.108), (5.109), namely

x+ − x

x − x−
= 1 + ε. (5.111)

The general solution of equation (5.111) is

xn = (x0 + B)(1 + ε)n − B (5.112)

where x0 and B are integration constants. We will identify B with the constant in
equation (5.108), but leave ε as an arbitrary constant. Equation (5.112) defines an exponential
lattice (for ε �= 0). Using (5.112) together with (5.108) and (5.109), we find

ux = H
[
(xn + B)

(
1 +

ε

2

)]
, H [z] = [Ġ]−1(z) (5.113)

un = A + (xn + B)H
[
(xn + B)

(
1 +

ε

2

)]
− G

[
H(xn + B)

(
1 +

ε

2

)]
. (5.114)

There is no guarantee that equations (5.113) and (5.114) are compatible. However, let us
consider the two special cases with three-dimensional solvable symmetry algebras, namely
algebras A3,1 and A3,2 of section 5.3.3.

Algebra A3,1. We choose G(ux) to be

G(ux) = (k − 1)2

k
u

k
k−1
x , k �= 0, 1. (5.115)

From equations (5.113) and (5.114) we obtain

ux =
(

1

k − 1

)k−1

xk−1
n

(
1 +

ε

2

)k−1
(5.116)

un = 1

k

(
1

k − 1

)k−1

(xn + B)k
(

1 +
ε

2

)k−1 [
1 + (1 − k)

ε

2

]
. (5.117)

The consistency condition (for ux to be the discrete derivative of un) provides us with a
transcedental equation for ε:

[(1 + ε)k − 1]
[
1 + (1 − k)

ε

2

]
= kε. (5.118)

In the continuous limit we take ε → 0 and un given by equation (5.117) goes to the general
solution of the ODE (5.71). In equation (5.118) terms of order ε0, ε and ε2 cancel. The
solution un coincides with the continuous limit up to terms of order ε2.
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We mention that in the special case k = −1 all three symmetries of the O�S are
Lagrangian ones and in this case equation (5.118) is identically satisfied for any ε.

Algebra A3,2. We choose G(ux) to be

G(ux) = eux (5.119)

and obtain

ux = ln(xn + B)
(

1 +
ε

2

)
, (5.120)

un = (xn + B) ln(xn + B) + A + (xn + B)
[
ln
(

1 +
ε

2

)
−
(

1 +
ε

2

)]
. (5.121)

Expressions (5.120) and (5.121) are consistent if ε satisfies

ε
(

1 +
ε

2

)
− (1 + ε) ln(1 + ε) = 0. (5.122)

Again (5.121) coincides with its continuous limit up to terms of order ε2 and in (5.122) terms
of order ε0, ε1 and ε2 cancel.

For the sl(2, R) algebra A3,3 all three symmetry operators X̂1, X̂2 and X̂3 correspond to
Lagrangian symmetries. The corresponding O�S is integrated in [67].

5.4. Symmetries of partial differential schemes

As in the introduction we will restrict to P�S with one dependent variable u and two
independent ones x and t.

Point transformations will be generated by vector fields of the form (1.25) and their
prolongation must act on all points of the lattice figuring in equation (1.18) and is given by
equation (1.26).

The continuous transformations generated by the vector field (1.25) will leave the solution
set of the system (1.18) invariant if we have

pr X̂Ea|Eb=0 = 0, a = 1, . . . , nE; b = 1, . . . , nE. (5.123)

Equation (5.123) provides a system of determining equations for the coefficients ξ, τ and φ

in equation (1.25), just as in the case of O�S.
Most of the literature on symmetries of P�S is devoted to the invariant discretization of

partial differential equations [15, 32, 62, 65, 68]. An exception is [160] where the form of the
P�S was postulated and its symmetry group was calculated.

Here we shall give a new example of the second procedure.
Let us consider the continuous wave equation

uxt = 0 (5.124)

and its discretization (1.23) given in the introduction. The PDE (5.124) is conformally invariant
and linear. Its symmetry algebra is infinite dimensional and is realized by the vector fields

T̂ (f ) = f (t)∂t , X̂(h) = h(x)∂x,

L̂ = u∂u, Ŝ1(k) = k(t)∂u, Ŝ2(l) = l(x)∂u,
(5.125)

where f (t), h(x), k(t) and l(x) are arbitrary functions of the indicated variables. T̂ (f )

and X̂(h) correspond to conformal transformations, in this case an arbitrary invertible
reparametrization of t and x (separately). Ŝ1(k) and Ŝ2(l) simply represent the linear
superposition principle: we can add an arbitrary solution of equation (5.124) to any given
solution. The vector field L̂, present for any linear equation, only tells us that the constant
multiple of a solution is also a solution.
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Now let us consider the system (1.23) of the introduction. Applying pr X̂ of
equation (1.26) to E2 and E3 we find ξ = ξ(x), τ = τ(t). On the lattice satisfying
E2 = E3 = 0 equation E1 = 0 can be rewritten as

u(xm,n+1, tm+1,n) − u(xm,n, tm+1,n) − u(xm,n+1, tm,n) + u(xm,n, tm,n) = 0. (5.126)

Applying pr X̂ to (5.126) we find φ = φ1(x) + φ2(t) + cu, where ξ(x), τ (t), φ1(x) and φ2(t)

are arbitrary functions and c is an arbitrary constant. Thus, the symmetry algebra of the P�S
(1.23) is given by equation (5.125) and coincides with that of its continuous limit. Conformal
invariance of the P�S in this case means that we have an orthogonal lattice but the spacings
on each axis are unspecified. This also explains why the solutions of the scheme (1.23), given
by equation (1.24) coincide with those of equation (5.124) for any choice of α(m) and β(n)

in equation (1.24).
If we impose any further conditions on the lattice we will reduce the symmetry group.

For instance, if we request that the spacing be regular by imposing

E4 = tm+1,n − 2tm,n + tm−1,n = 0, E5 = xm,n+1 − 2xm,n + xm,n−1 = 0, (5.127)

we loose conformal invariance and keep only translational and dilational invariance:

τ = τ1tm,n + τ0, ξ = ξ1xm,n + ξ0, (5.128)

where τi and ξi are constants.
We wish to stress that the PDE (5.124) is exceptional in having such a simple invariant

discretization. The known invariant discrete models for the heat equation, the Korteweg–de
Vries equation or the nonlinear Schrödinger equation are much more involved [15, 32, 62, 65,
68, 265].

6. Conclusions and open problems

Let us compare the symmetry approach for difference equations with that for differential ones.
In both cases one is interested in transformations taking solutions into solutions and in both
cases, choices have to be made. Lie’s choice of point symmetries of differential equations is
so natural that it is often forgotten that it is also just an Ansatz: the vector fields should depend
on the independent and dependent variables only. Generally speaking, this Ansatz has turned
out to be the most useful one. Contact symmetries have much fewer applications than point
ones. Generalized symmetries are mainly of use for identifying integrable nonlinear partial
differential equations.

In this review we have stressed the fact that for difference equations this choice of
pure point transformations must be modified. Without significant modifications it remains
mainly fruitful for differential–difference equations rather than for purely difference ones (see
section 2).

Which modifications are needed for difference equations depends on the application that
we have in mind. For differential equations there are two main types of applications in
physics. In the first, the equations are already known and group theory is used to solve them.
In the second, the symmetries of the physical problem are known and are used in building
up the theoretical model, i.e. the symmetries precede the equations. These two aspects are
also present in the case of difference equations, but there are new features. First of all, the
physical processes that are being described may be discrete and the lattices involved may
be real physical objects. If we are considering linear theories, like quantum mechanics, or
quantum field theory on a lattice, then the generalized point symmetries of section 3 are
extremely promising. A mathematical tool, umbral calculus, is ready to be used, both to
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solve equations and also to formulate models. For nonlinear theories on given fixed lattices
the most appropriate symmetry approach involves generalized symmetries, as reviewed in
section 4. Their main application is as in the continuous case: to identify integrable systems
on lattices. Moreover it can be used to get new interesting solutions. An interesting feature
is that some point symmetries of differential equations, in particular dilations, appear as
generalized symmetries for difference equations.

The second type of application of difference equations in physics is more practical and in
a certain sense, less fundamental. We have in mind the situation when the physical processes
are really continuous and are described by differential equations. These are then discretized
in order to solve them. The lattices used are then our choice and they can be chosen in a
symmetry adapted way. Moreover, as shown in section 5, the difference equation and lattice
are both part of a ‘difference scheme’ and the actual lattice is part of the solution of this
scheme. We can then restrict ourselves to point transformations, but they act simultaneously
on the solutions and on the lattice.

In an attempt to keep this review reasonably short, we have left out many interesting
and important topics. Among them we have not included a complete discussion of partial
difference equations on transforming symmetry-adapted lattices [65, 68, 160, 260] and the
use of Lie point symmetries to get conditions for the linearizability of difference equations
[33, 98, 137, 187, 223, 236, 238]. Also left out is the vast area of numerical methods of
solving differential equations, making use of their symmetry properties [266] or the treatment
of asymptotic symmetries for difference equations [89]. Very active areas of research, not
covered in the present review, are the use of higher symmetries to identify integrable lattice
equations [10, 11, 175–178, 245, 268], and also discrete versions of the Painlevé text [2, 52,
53, 95–97, 108–111, 133, 210, 224–226, 251, 256].

Since we are reviewing a relatively new area of research, many open questions remain.
Thus, for purely difference equations on fixed lattices, the role of discrete symmetries has not
been fully explored. Basically, what is needed, specially for partial difference equations, is to
apply results from crystallography to characterize discrete or finite transformations taking a
lattice into itself. For differential–difference equations with three independent variables, one
or two of them discrete, a classification of equations with Kac–Moody–Virasoro symmetries
should help in identifying new integrable lattice equations. Applications to genuine physical
systems would be of great interest. The umbral approach of section 3 has so far been applied in
a rather formal manner. The question of the convergence of formal power series solutions must
be addressed. The main question is whether one can develop a complete convergent quantum
theory on a lattice. The generalized symmetries of section 4 are an integral part of the theory
of integrability on a lattice. There the greatest challenge lies in the field of applications, i.e in
applying the techniques of integrability to the real world of discrete phenomena. Finally, the
greatest challenge in the direction of symmetry adapted discretizations is to establish whether
they provide improved numerical methods, in particular for partial differential equations, or
higher order ordinary ones.
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